Structures and lower bounds for binary covering arrays

Soohak Choi
(Hyun Kwang Kim and Dong Yeol Oh)

Institute of Mathematical Sciences, Ewha Womans University

November 16
Notations

- $B_q = \{0, 1, \ldots, q - 1\}$.
- For $u = (u_1, u_2, \ldots, u_n) \in B_q^n$,
 - $\text{supp}(u) = \{i \mid u_i \neq 0\}$.
 - $\text{wt}(u) = |\text{supp}(u)|$.
- $[n] = \{1, 2, \ldots, n\}$.
- For $C = (c_{ij})$ over B_q, c^i is the i-th column of C.
The covering array

Definition

An \(m \times n \) matrix \(C \) over \(B_q \) is called a \(t \)-covering array (or, a covering array of size \(m \), strength \(t \), degree \(n \), and order \(q \)) if, in any \(t \) columns of \(C \), all \(q^t \) possible \(q \)-ary \(t \)-vectors occur at least once. We denote such an array by \(CA(m; t, n, q) \).

Example

The following matrix is a 2-covering array over \(B_2 \).

\[
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
\]
Definition

An \(m \times n \) matrix \(C \) over \(B_q \) is called a \(t \)-covering array (or, a covering array of size \(m \), strength \(t \), degree \(n \), and order \(q \)) if, in any \(t \) columns of \(C \), all \(q^t \) possible \(q \)-ary \(t \)-vectors occur at least once. We denote such an array by \(CA(m; t, n, q) \).

Applications

- circuit testing,
- intersecting codes,
- data compression.
The main problem is to optimize one of the parameters \(m \) and \(n \) for given value of the other:

- \((a)\) find the minimum size \(\text{CAN}(t, n, q) \) of a \(t \)-covering array of given degree \(n \) over \(B_q \);
- \((b)\) find the maximum degree \(\overline{\text{CAN}}(t, m, q) \) of a \(t \)-covering array of given size \(m \) over \(B_q \).

- \(q^t \leq \text{CAN}(t, n, q) \leq q^n \).

- Rènyi (for \(m \) even), and independently Katona, and Kleitman and Spencer (for all \(m \)) showed that \(\overline{\text{CAN}}(2, m, 2) = \left(\left\lfloor \frac{m-1}{2} \right\rfloor - 1 \right) \).

- Johnson and Entringer showed that \(\text{CAN}(n - 2, n, 2) = \left\lfloor \frac{2^n}{3} \right\rfloor \).

- Colbourn et al. give all the known upper and lower bounds for covering arrays up to degree 10, order 8 and all possible strengths, but their classification results are much more limited.
Theorem

(G. Roux 1987)

\[\text{CAN}(t + 1, n + 1, q) \geq q \text{CAN}(t, n, q), \]
\[\text{CAN}(3, 2n, 2) \leq \text{CAN}(3, n, 2) + \text{CAN}(2, n, 2). \]
Example

The following matrix is a 2-covering array over B_2.

$$
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{array}
$$
Example

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Permutation of the rows

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Permutation of the columns

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

Permutation of the values of any column
The covering array

Definition

Two covering arrays C and C' are equivalent if one can be transformed into the other by a series of operations of the following types:

(a) permutation of the rows;
(b) permutation of the columns;
(c) permutation of the values of any column.

- Katona proved that maximal binary covering arrays of strength 2 are uniquely determined up to equivalence.
- Johnson and Entringer showed that $\left\lfloor \frac{2^n}{3} \right\rfloor \times n$ binary covering arrays of strength $n - 2$ are uniquely determined up to equivalence.
Goals

- Classify the structures of some optimal binary 2-covering arrays.
- Improve the lower bound of Roux on $CAN(t, n, q)$ when $t = 3, q = 2$.
For $u \in B_2^n$, $\overline{u} = (\overline{u}_1, \ldots, \overline{u}_n)$ where

$$\overline{u}_i = \begin{cases} 1, & \text{if } u_i = 0; \\ 0, & \text{if } u_i = 1. \end{cases}$$

- $u \in B_2^n \iff \text{supp}(u) \subseteq [n]$
- The following statements are equivalent.
 - C is a binary t-covering array.
 - $\bigcap_{k=1}^{t} X_{i_k} \neq \emptyset$ for $\{i_1, \ldots, i_t\} \subseteq [n]$, where X_k is either $\text{supp}(c^k)$ or $\overline{\text{supp}(c^k)}$.
Binary 2-covering array

A binary 2-covering array is a matrix C with entries c_i^j that satisfies the following properties:

- Each row of C contains exactly two ones.
- Each column of C contains exactly two ones.

Here is an example of a binary 2-covering array:

$$
\begin{array}{cccc}
1 & 1 & 1 & 1 \\
2 & 1 & 0 & 0 \\
3 & 0 & 1 & 0 \\
4 & 0 & 0 & 1 \\
5 & 0 & 0 & 0 \\
\end{array}
$$

The support of each column is defined as the set of rows containing a one in that column. For example, the support of c^1 is $\{1, 2\}$.

<table>
<thead>
<tr>
<th>Column</th>
<th>c^1</th>
<th>c^2</th>
<th>c^3</th>
<th>c^4</th>
<th>supp(c^1)</th>
<th>supp(c^2)</th>
<th>supp(c^3)</th>
<th>supp(c^4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>${1, 2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td>${1, 3}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td>${1, 4}$</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>${1, 5}$</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Binary 2-covering array

Let $\mathbf{C} = \mathbf{c}_1 \mathbf{c}_2 \mathbf{c}_3 \mathbf{c}_4$ be a binary covering array.

$$
\begin{array}{ccccc}
1 & 1 & 1 & 1 & 1 \\
2 & 1 & 0 & 0 & 0 \\
3 & 0 & 1 & 0 & 0 \\
4 & 0 & 0 & 1 & 0 \\
5 & 0 & 0 & 0 & 1 \\
\end{array}
$$

- $\text{supp}(\mathbf{c}_1) = \{1, 2\}$
- $\text{supp}(\mathbf{c}_2) = \{1, 3\}$
- $\text{supp}(\mathbf{c}_3) = \{1, 4\}$
- $\text{supp}(\mathbf{c}_4) = \{1, 5\}$

![Venn diagram showing the support of \mathbf{c}_1 and \mathbf{c}_2](image_url)
Definition

The standard maximal binary 2-covering array C of size m is an $m \times \left(\left\lfloor \frac{m-1}{2} \right\rfloor - 1\right)$ matrix with

1. the first row of C is all 1 row,
2. the columns of the remaining matrix is the family of all vectors of $(\left\lfloor \frac{m}{2} \right\rfloor - 1)$ 1's and $(m - \left\lfloor \frac{m}{2} \right\rfloor)$ 0's.

Example

$$
\begin{array}{cccccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
$$
Theorem

(E. W. Hall 1935)
Suppose we have a bipartite graph G with two vertex sets V_1 and V_2. Suppose that

$$|\Gamma(S)| \geq |S| \quad \text{for every } S \subset V_1.$$

Then G contains a complete matching.
Lemma

Let C be a 2-covering array of size m and degree n with $\text{wt}(c^i) \leq \lfloor \frac{m}{2} \rfloor$ for all $1 \leq i \leq n$. Put $s = \min_{1 \leq i \leq n} \text{wt}(c^i)$. For any integer s' satisfying $s < s' \leq \lfloor \frac{m}{2} \rfloor$, there is a 2-covering array C' of size m and degree n with $s' \leq \text{wt}(c'^i) \leq \lfloor \frac{m}{2} \rfloor$ such that $\text{supp}(c^i) \subseteq \text{supp}(c'^i)$ for all $i \in [n]$.

Corollary

Let C be a 2-covering array of size m and degree n with $\text{wt}(c^i) \leq \lfloor \frac{m}{2} \rfloor$ for all $i \in [n]$ and $\text{wt}(c^j) < \lfloor \frac{m}{2} \rfloor$. Then there is a 2-covering array C' of size m and degree n with $\text{wt}(c'^j) = \lfloor \frac{m}{2} \rfloor - 1$ and $\text{wt}(c'^i) = \lfloor \frac{m}{2} \rfloor$ for all $i \in [n]$ and $i \neq j$ such that $\text{supp}(c^i) \subseteq \text{supp}(c'^i)$ for all $i \in [n]$.
Theorem

Let $2 \leq k \leq \frac{m}{2}$. Let C be a binary 2-covering array of size m such that $\text{wt}(c^i) \leq k$ for any column of C and $\bigcap_{1 \leq i \leq n} \text{supp}(c^i) = \emptyset$. Then

$$n \leq d = 1 + \binom{m - 1}{k - 1} - \binom{m - k - 1}{k - 1}.$$

There is strict inequality if $\text{wt}(c^i) < k$ for some $i \in [n]$.
Theorem

Let $m \geq 4$, $k = \lfloor \frac{m}{2} \rfloor$, and $(\binom{m-1}{k-1}) + m - 3k + 1 \leq n \leq (\binom{m-1}{k-1})$.

If an $m \times n$ matrix C over B_2 is a 2-covering array, then C is equivalent to the matrix made from deleting columns of standard binary 2-covering.
Corollary

Every maximal binary 2-covering arrays is equivalent to the standard maximal 2-covering array.

Corollary

If \(m \geq 6 \) and \(n = \left(\left\lfloor \frac{m-1}{2} \right\rfloor - 1 \right) - 1 \), then every \(m \times n \) binary 2-covering array \(C \) is made from deleting a column of the standard maximal 2-covering array.

- 10 \(\times \) 5, 12 \(\times \) 11 binary optimal 3-covering and 24 \(\times \) 12 binary optimal 4-covering arrays are unique.
- There is no 48 \(\times \) 13 binary 5-covering array.
Theorem

If $m \geq 7$, $k = \lfloor \frac{m}{2} \rfloor$, and $(\binom{m-1}{k-1}) + m - 3k + 1 \leq n \leq (\binom{m-1}{k-1})$, then

$$\text{CAN}(3, n + 1, 2) \geq \begin{cases} 2\text{CAN}(2, n, 2) + 1 & \text{if } m \text{ is odd} \\ 2\text{CAN}(2, n, 2) + 2 & \text{if } m \text{ is even} \end{cases}$$
Table 1: The number of covering arrays $CA(6; 2, n, 2)$.

<table>
<thead>
<tr>
<th>n</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CA(6; 2, n, 2)$</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 2: The number of covering arrays $CA(8; 2, n, 2)$.

<table>
<thead>
<tr>
<th>n</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>$CA(8; 2, n, 2)$</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Table 3: Tables of \(\text{CAN}(3, n, 2) \).
Thank you for your attention!