Lower Bounds on the Complexity of MSO$_1$ Model-Checking

Jan Obdržálek

Joint work with
Robert Ganian Petr Hliněný Alexander Langer
Peter Rossmanith Somnath Sikdar

Theoretical Computer Science,
RWTH Aachen University, Germany

Faculty of Informatics,
Masaryk University, Brno, Czech Republic

GROW, Daejeon, October 28, 2011
Algorithmic Meta Theorems

Theorems that identify classes of tractable problems, rather than a few isolated problems.

Examples

- All graph properties expressible in MSO\textsubscript{2} can be decided in linear time on graphs of bounded treewidth [Courcelle, 1990].
- All problems in MAX SNP have constant-factor approximation algorithms [Papadimitriou and Yannakakis, 1991].
- Compact parameterized problems expressible in CMSO admit polynomial kernels on graphs of bounded genus [Bodlaender et al, 2010].

Uses

- Quick way of checking whether a problem admits an algorithm of a particular kind.
Theorem (Courcelle, 1990)

Any graph property definable in MSO_2 can be decided in linear time on any class of graphs of bounded treewidth.

MSO_2 – monadic second-order logic with quantification over sets of vertices and/or edges

Expressible in MSO_2: $\text{HAMILTONIAN CYCLE}, \text{VERTEX COVER}, \ldots$

3-Colourability:

$$\exists V_1, V_2, V_3 \left[\forall v \left(v \in V_1 \lor v \in V_2 \lor v \in V_3 \right) \land \land_{i=1,2,3} \forall v, w \left(v \notin V_i \lor w \notin V_i \lor \neg \text{adj}(v, w) \right) \right]$$
The theorem may also be stated as:

Theorem (Courcelle, 1990)

Let \mathcal{C} be any class of graphs of bounded tree-width. Then $\text{MC}(\text{MSO}_2, \mathcal{C})$ is decidable in linear time.

$\text{MC}(\text{MSO}_2, \mathcal{C})$ – the MSO_2 model-checking problem on \mathcal{C}:
Given a $G \in \mathcal{C}$ and $\varphi \in \text{MSO}_2$ check whether $G \models \varphi$.

Questions:

- Are there classes of graphs of unbounded treewidth such that Courcelle’s Theorem still holds? **YES!** (in XP) [Makowsky and Mariño, 2004]
- How fast must the treewidth grow for Courcelle’s theorem to fail? *Poly-logarithmically* [Kreutzer and Tazari, 2010]
The theorem may also be stated as:

Theorem (Courcelle, 1990)

Let \mathcal{C} be any class of graphs of bounded tree-width. Then $MC(\text{MSO}_2, \mathcal{C})$ is decidable in linear time.

$MC(\text{MSO}_2, \mathcal{C})$ – the MSO_2 model-checking problem on \mathcal{C}: Given a $G \in \mathcal{C}$ and $\varphi \in \text{MSO}_2$ check whether $G \models \varphi$.

Questions:

- Are there classes of graphs of unbounded treewidth such that Courcelle’s Theorem still holds?
 YES! (in XP) [Makowsky and Mariño, 2004]
- How fast must the treewidth grow for Courcelle’s theorem to fail?
 Poly-logarithmically [Kreutzer and Tazari, 2010]
The theorem may also be stated as:

Theorem (Courcelle, 1990)

Let C be any class of graphs of bounded tree-width. Then $MC(\text{MSO}_2, C)$ is decidable in linear time.

$MC(\text{MSO}_2, C)$ – the MSO_2 model-checking problem on C:
Given a $G \in C$ and $\varphi \in \text{MSO}_2$ check whether $G \models \varphi$.

Questions:

- Are there classes of graphs of unbounded treewidth such that Courcelle’s Theorem still holds? **YES!** (in XP) [Makowsky and Mariño, 2004]
- How fast must the treewidth grow for Courcelle’s theorem to fail? **Poly-logarithmically** [Kreutzer and Tazari, 2010]
The theorem may also be stated as:

Theorem (Courcelle, 1990)

Let C be any class of graphs of bounded tree-width. Then $\text{MC}(\text{MSO}_2, C)$ is decidable in linear time.

$\text{MC}(\text{MSO}_2, C)$ – the MSO_2 model-checking problem on C: Given a $G \in C$ and $\varphi \in \text{MSO}_2$ check whether $G \models \varphi$.

Questions:

- Are there classes of graphs of unbounded treewidth such that Courcelle's Theorem still holds? **YES!** (in XP) [Makowsky and Mariño, 2004]
- How fast must the treewidth grow for Courcelle’s theorem to fail? Poly-logarithmically [Kreutzer and Tazari, 2010]
Courcelle’s Theorem – Lower Bounds

The theorem may also be stated as:

Theorem (Courcelle, 1990)

Let C be any class of graphs of bounded tree-width. Then $MC(MSO_2, C)$ is decidable in linear time.

$MC(MSO_2, C)$ – the MSO_2 model-checking problem on C: Given a $G \in C$ and $\varphi \in MSO_2$ check whether $G \models \varphi$.

Questions:

- Are there classes of graphs of unbounded treewidth such that Courcelle’s Theorem still holds?
 YES! (in XP) [Makowsky and Mariño, 2004]

- How fast must the treewidth grow for Courcelle’s theorem to fail?
 Poly-logarithmically [Kreutzer and Tazari, 2010]
Unbounding Tree-Width

Definition (Kreutzer and Tazari, 2010)

The treewidth of a graph class C is *strongly unbounded by* $f : \mathbb{N} \to \mathbb{N}$ if for all $n \in \mathbb{N}$ there exists $G_n \in C$ with

- $f(|G_n|) \leq tw \ G_n$ *unbounded*
- $n \leq tw \ G_n \leq n^\gamma$, for some fixed γ *dense*
- G_n can be constructed in time 2^{n^ϵ}, for some fixed $\epsilon < 1$ *constructable*

strongly unbounded poly-logarithmically:

$$\log^c(|G_n|) \leq tw \ G_n \text{ for all } c \geq 1$$
Recent known results

Theorem (Kreutzer and Tazari, SODA’10)

Let \mathcal{C} be a graph class with the following properties:

1. the treewidth of \mathcal{C} is strongly unbounded poly-logarithmically
2. \mathcal{C} is closed under Γ-colourings

Then $\text{MC}(\text{MSO}_2\Gamma, \mathcal{C})$ is not in XP ($|G|^f(|\varphi|)$ for any computable f), unless the Exponential-Time Hypothesis (ETH) fails.

Theorem (Kreutzer and Tazari, LICS’10)

Let \mathcal{C} be a graph class with the following properties:

1. the treewidth of \mathcal{C} is strongly unbounded poly-logarithmically
2. \mathcal{C} is closed under taking subgraphs

Then $\text{MC}(\text{MSO}_2, \mathcal{C})$ is not in XP, unless ETH fails.
Recent known results

Theorem (Kreutzer and Tazari, SODA’10)

Let \mathcal{C} be a graph class with the following properties:

1. the treewidth of \mathcal{C} is strongly unbounded poly-logarithmically
2. \mathcal{C} is closed under Γ-colourings

Then $\text{MC}(\text{MSO}_2-\Gamma, \mathcal{C})$ is not in XP ($|G|^f(|\varphi|)$ for any computable f), unless the Exponential-Time Hypothesis (ETH) fails.

Theorem (Kreutzer and Tazari, LICS’10)

Let \mathcal{C} be a graph class with the following properties:

1. the treewidth of \mathcal{C} is strongly unbounded poly-logarithmically
2. \mathcal{C} is closed under taking subgraphs

Then $\text{MC}(\text{MSO}_2, \mathcal{C})$ is not in XP, unless ETH fails.
Our Results I

Theorem

Assume a (suitable but fixed) finite label set L. Let \mathcal{C} be a graph class with the following properties:

1. The tree-width of \mathcal{C} is densely unbounded poly-logarithmically.
2. \mathcal{C} is closed under taking subgraphs.

Then $\text{MC}(\text{MSO}_1^{-L}, \mathcal{C}^L)$ is not in XP unless the nonuniform Exponential-Time Hypothesis (nonuniform ETH) fails.

MSO$_1$ – no quantification over sets of edges

MSO$_1^{-L}$ – extension of MSO$_1$ with vertex-label predicates for a finite set of labels L

\mathcal{C}^L – the class of all L-vertex labelled graphs from \mathcal{C}

nonuniform ETH – SAT not in $2^{o(n)}$ with subexponential advice
Main Improvements

1. Our definition of “densely unbounded” avoids the constructability requirement in the definition of “strongly unbounded”. We “pay” for this by using a stronger complexity assumption: Nonuniform ETH.

2. Kreutzer and Tazari: MSO\textsubscript{2} on unlabelled graphs

 Our result: MSO\textsubscript{1}-L.

3. Much simpler, streamlined proof.
MSO$_1$-L is much weaker than MSO$_2$:

- HAMILTONIANPATH cannot be expressed in MSO$_1$-L
- Extending [Courcelle, Makowski, Rotics, 2000] from MSO$_1$ to MSO$_2$ would mean EXP=NEXP

Labels do not matter:

- Many results concerning MSO$_1$ can be formulated with or without labels.
- Both Courcelle’s theorem and [CMR00] can be extended with labels.
At a high level, our proof technique is similar to Kreutzer and Tazari: a *multi-step reduction from SAT*.

Proof *shorter* mainly because we do not need to tediously construct a “skeleton” in the class \mathcal{C} suitable for reduction. It comes “for free” from the *oracle advice function* which comes with the nonuniform computing model.

We *avoid* the need for MSO_2 by using *strong edge colourings* to simulate certain edge-sets inside MSO_1-L.
High-level Proof Description

Reduce SAT to MC(MSO$_2$, \mathcal{C}).

- **Input:** A SAT formula F of length n.
- **Question:** Is F satisfiable?

Reduction

1. Construct $G_n \in \mathcal{C}$ of treewidth n^d s.t. $\log^c(|G_n|) < tw \ G_n$ and $c > d$.
 - Strongly poly-logarithmically unbounded.
2. Encode F in a subgraph of G_n.
 - Using closure under subgraphs.
3. Define an MSO-formula φ (independent of F) s.t. F satisfiable iff $G_n \models \varphi$.
 - Deciding $G_n \models \varphi$ takes time $2^{n^{c/d} \cdot f(|\varphi|)}$, subexponential in $|F|$.
Grid-like graphs (minors)
A pair (G, \mathcal{P}) such that:

1. G is the union of all the paths in \mathcal{P},
2. each path in \mathcal{P} has at least two vertices, and
3. the *intersection graph* $I(\mathcal{P})$ of the path collection is bipartite.

Theorem (Reed and Wood, 2008)

Every graph with tree-width at least $c \ell^4 \sqrt{\log \ell}$ contains a subgraph which is grid-like of order ℓ, for some constant c.

Order of a grid-like graph: the maximum integer ℓ such that the intersection graph $I(\mathcal{P})$ contains a K_{ℓ}-minor.
Strong Edge Colourings
An assignment of colours to the edges of a graph such that no path of length three contains the same colour twice.

Theorem (Cranston, 2006)
Every graph of maximum degree 4 has a strong edge-colouring using at most 22 colours. This colouring can be found with a polynomial-time algorithm.
MSO$_1$ interpretation in $\{1,3\}$-regular graphs

Theorem (Ganian et al, 2010)

The MSO$_1$ theory of all simple graphs has an efficient interpretation in the MSO$_1$ theory of all simple $\{1,3\}$-regular graphs. Furthermore, this efficient interpretation I can be chosen such that, for every MSO$_1$ formula ψ, the resulting property ψ^I is invariant under subdivisions of edges.
Our main theorem can be strengthened by taking a stricter assumption:

Theorem

Let \mathcal{C} be a graph class with the following properties:

1. the tree-width of \mathcal{C} is densely unbounded poly-logarithmically
2. \mathcal{C} is closed under taking subgraphs

Then $\text{MC}(\text{MSO}_1\cdot L, \mathcal{C}_L)$ for every finite set of labels L such that $|L| = (|\varphi|)$ is not in XP unless $\text{PH} \subseteq \text{DTIME}(2^{o(n)})/\text{SUBEXP}$.
This is an extension of [Ganian et al, 2010]

Theorem

Let L be a finite set of labels, $|L| \geq 47$. Unless the nonuniform Exponential-Time Hypothesis fails, there exists no directed width measure δ satisfying following three properties:

1. δ is monotone under taking subdigraphs;
2. δ largely surpasses the tree-width of underlying undirected graphs; and
3. for all L-vertex-labelled digraphs D and all formulas $\varphi \in \text{MSO}_1$-L, the problem of deciding whether $D \models \varphi$ is solvable in time $O(|D|^{f(\delta(D), |\varphi|)})$ for some computable f.
Food!