A VERY SINGULAR SOLUTION FOR THE SLOW DIFFUSION EQUATION WITH NONLINEAR CONVCTION

Zhong Bo Fang and Minkyu Kwak

1) Department of Mathematics, Chonnam National University, Kwangju, 500–757, Korea
2) Department of Mathematics, Chonnam National University, Kwangju, 500–757, Korea

Corresponding Author: Zhong Bo Fang, fangzb7777@hotmail.com

ABSTRACT

We study an existence and uniqueness of the very singular solution for a slow diffusion equation with nonlinear convection term defined on the half line:

$$u_t = (u^m)_{xx} + (u^q)_x \quad \text{in} \quad Q = \mathbb{R}^+ \times \mathbb{R}^+$$

with homogeneous Neumann boundary condition, where $m > 1$ and $m < q < m + 1$. The solution we find is of the form

$$u(x, t) = t^{-\alpha} f(xt^{-\beta}) := t^{-\alpha} f(r), \quad r = xt^{-\beta},$$

where $\alpha = 1/(2q - m - 1)$, $\beta = (q - m)/(2q - m - 1)$, and f is the nontrivial, nonnegative solution of a nonlinear ordinary differential equation:

$$(f^m)'' + \beta rf' + \alpha f + (f^q)' = 0$$

with condition $f'(0) = 0$ and $\lim_{r \to \infty} r^{\alpha/\beta} f(r) = 0$.

REFERENCES

16. G. Leoni, on the very singular self-similar solutions for the porous media equation with absorption, Differential Intergal Equations., 10(1997), no.6, 1123-1140.