ON CONFORMAL AND QUASI-CONFORMAL CURVATURE TENSORS OF AN $N(k)$-QUASI EINSTEIN MANIFOLD

ALIAKBAR HOSSEINZADEH AND ABOLFAZ TALESHIAN

Abstract. We consider $N(k)$-quasi Einstein manifolds satisfying the conditions $C(\xi, X).S = 0$, $\tilde{C}(\xi, X).S = 0$, $P(\xi, X).C = 0$, $P(\xi, X).\tilde{C} = 0$ and $\tilde{P}(\xi, X).\tilde{C} = 0$ where C, \tilde{C}, P and \tilde{P} denote the conformal curvature tensor, the quasi-conformal curvature tensor, the projective curvature tensor and the pseudo projective curvature tensor, respectively.

1. Introduction

The notion of a quasi Einstein manifold was introduced by M. C. Chaki in [3]. A non flat n-dimensional Riemannian manifold (M, g) is said to be a quasi Einstein manifold if its Ricci tensor S satisfies

\begin{equation}
S(X, Y) = ag(X, Y) + bg(X)\eta(Y), \quad \forall X, Y \in TM
\end{equation}

for some smooth functions a and $b \neq 0$, where η is a non zero 1-forms such that

\begin{equation}
g(X, \xi) = \eta(X), \quad g(\xi, \xi) = \eta(\xi) = 1
\end{equation}

for the associated vector field ξ. The 1-form η is called the associated 1-form and the unit vector field ξ is called the generator of the manifold. If $b = 0$, then the manifold reduced to an Einstein manifold.

The Ricci operator Q of a Riemannian manifold (M, g) is defined by

\begin{equation}
S(X, Y) = g(QX, Y).
\end{equation}

For a quasi Einstein manifold [3], the Ricci operator satisfies

\begin{equation}
Q = aI + b\eta \otimes \xi.
\end{equation}

From (1.1) and (1.2) we obtain

\begin{equation}
S(X, \xi) = (a + b)\eta(X),
\end{equation}

\begin{equation}
r = na + b,
\end{equation}

Received November 20, 2010.

2010 Mathematics Subject Classification. 53C25.

Key words and phrases. k-nullity distribution, quasi Einstein manifold, $N(k)$-quasi Einstein manifold, conformal curvature tensor, quasi-conformal curvature tensor, projective curvature tensor, pseudo projective curvature tensor.

©2012 The Korean Mathematical Society

317
where \(r \) is the scalar curvature of \(M^n \).

If the generator \(\xi \) belongs to \(k \)-nullity distribution \(N(k) \), then the quasi Einstein manifold is called as an \(N(k) \)-quasi Einstein manifold [12]. In [12], it was shown that a conformally flat quasi Einstein manifold is an \(N(k) \)-quasi Einstein manifold and in particular a 3-dimensional quasi Einstein manifold is an \(N(k) \)-quasi Einstein manifold. The derivation conditions \(R(\xi, X).R = 0 \) and \(R(\xi, X).S = 0 \) were also studied in [12], where \(R \) and \(S \) denote the curvature and Ricci tensor, respectively. In [9], it was proved that in an \(n \)-dimensional \(N(k) \)-quasi Einstein manifold \(k = \frac{a+b}{n-1} \). In [7], derivation conditions \(R(\xi, X),\rho = 0, \rho(\xi, X).S = 0 \) and \(\rho(\xi, X),\rho = 0 \) were studied where \(\rho \) is the projective curvature tensor, also physical examples of \(N(k) \)-quasi Einstein manifolds were given. The derivation conditions \(R(\xi, X).C = 0, R(\xi, X).\hat{C} = 0 \) were studied in [8], where \(C \) and \(\hat{C} \) denote the conformal curvature tensor and quasi conformal curvature tensor, respectively. The theory of \(N(k) \)-quasi Einstein manifolds deals with subjects such as nullity of curvature like tensors and especially it concerns with the notion of \(k \)-nullity distribution which has been in the center of many works such as [1], [4] and [6] and the recent non-Riemannian analogue [2]. In this paper, we consider \(N(k) \)-quasi Einstein manifolds satisfying the conditions \(C(\xi, X).S = 0, \hat{C}(\xi, X).S = 0, \hat{P}(\xi, X).C = 0, \hat{P}(\xi, X).\hat{C} = 0 \) and \(P(\xi, X).C = 0, P(\xi, X).\hat{C} = 0 \) where \(C, \hat{C}, P \) and \(\hat{P} \) denote the conformal curvature tensor, the quasi-conformal curvature tensor, the projective curvature tensor and the pseudo-projective curvature tensor, respectively.

2. \(N(k) \)-quasi Einstein manifolds

Let \(R \) denote the Riemannian curvature tensor of a Riemannian manifold \(M \). The \(k \)-nullity distribution \(N(k) \) [11], of a Riemannian manifold defined by

\[
N(k): p \rightarrow N_p(k) = \{ Z \in T_p M \mid R(X, Y)Z = k\{g(Y, Z)X - g(X, Z)Y\}\}
\]

for all \(X, Y \in TM^n \), where \(k \) is some smooth function. In a quasi Einstein manifold \(M \), if the generator \(\xi \) belongs to some \(k \)-nullity distribution \(N(k) \), then it is said to be an \(N(k) \)-quasi Einstein manifold [12].

Lemma 2.1 ([9]). In an \(n \)-dimensional \(N(k) \)-quasi Einstein manifold it follows that

\[
(2.1) \quad k = \frac{a + b}{n - 1}.
\]

Let \((M^n, g) \) be an \(N(k) \)-quasi Einstein manifold. Then, we have [9]

\[
(2.2) \quad R(Y, Z)\xi = \frac{a + b}{n - 1} \{ \eta(Z)Y - \eta(Y)Z \}.
\]

The equation (2.2) is equivalent to

\[
(2.3) \quad R(\xi, Y)Z = \frac{a + b}{n - 1} \{ g(Y, Z)\xi - \eta(Z)Y \} = -R(\xi, Y)Z.
\]
Theorem 2.2 ([12]). An n-dimensional conformally flat quasi Einstein manifold is an $N(k)$-quasi Einstein manifold.

In [7], we view the following physical examples of $N(k)$-quasi Einstein manifolds.

Example 2.3 ([7]). A conformally flat perfect fluid spacetime (M^4, g) satisfying Einstein’s equation without cosmological constant is an $N(\frac{k}{3} + \frac{p}{6})$-quasi Einstein manifold.

Example 2.4 ([7]). A conformally flat perfect fluid spacetime (M^4, g) satisfying Einstein’s equation with cosmological constant is an $N(\frac{k}{3} + \frac{p}{6})$-quasi Einstein manifold, where k is the gravitational constant, σ is the energy density and p is the isotropic pressure of the fluid.

3. The conformal curvature tensor of an $N(k)$-quasi Einstein manifold

Let (M^n, g) be a Riemannian manifold, the conformal curvature tensor [5], is defined by

\[C(X, Y)Z = R(X, Y)Z - \frac{1}{n-2} \{ S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY \} \]
\[+ \frac{r}{(n-1)(n-2)} [g(Y, Z)X - g(X, Z)Y], \]

where Q is the Ricci operator. Also we have [8]

\[\eta(C(X, Y)Z) = 0. \]

Now, we prove the following theorem:

Theorem 3.1. If M is an $N(k)$-quasi Einstein manifold, then M satisfies the condition $C(\xi, X).S = 0$.

Proof. Assume that M is an (ξ)-quasi Einstein manifold. Then we have

\[C(\xi, X).S = -S(C(\xi, X)Y, Z) - S(Y, C(\xi, X)Z). \]

In view of (1.1) in (3.3) we have

\[C(\xi, X).S = b[\eta(C(\xi, X)Y)\eta(Z) + \eta(Y)\eta(C(\xi, X)Z)]. \]

From (3.2) in (3.4) we get

\[C(\xi, X).S = 0. \]

This completes the proof of the theorem. \(\square \)
The pseudo projective curvature tensor \hat{P} [10] and the projective curvature tensor [13], on a manifold M of dimension n are defined by

\[
\hat{P}(X, Y)Z = \alpha R(X, Y)Z + \beta \{S(Y, Z)X - S(X, Z)Y\}
\]

(3.6)

\[- \frac{r}{n} \left[\frac{\alpha}{n-1} + \beta \right] \{g(Y, Z)X - g(X, Z)Y\}
\]

and

\[
P(X, Y)Z = R(X, Y)Z - \frac{1}{n-1} \{S(Y, Z)X - S(X, Z)Y\},
\]

respectively, where α and β are constants such that $\alpha, \beta \neq 0$ and r is the scalar curvature. If $\alpha = 1$ and $\beta = -\frac{1}{n-1}$, then the pseudo projective curvature tensor is reduced to the projective curvature tensor.

Proposition 3.2. In an n-dimensional $N(k)$-quasi Einstein manifold M, the pseudo projective curvature tensor \hat{P} satisfies

\[
\hat{P}(\xi, X)Y = \left[\frac{\alpha - \beta}{n} \right] g(X, Y)\xi - \eta (Y)X \]

for all vector fields X, Y, Z on M.

Proof. From (1.1), (2.1), (2.2) and (3.6), Eq.(3.7) follows easily. \(\square\)

Theorem 3.3. Let M be an $N(k)$-quasi Einstein manifold. Then M satisfies the condition $\hat{P}(\xi, X).C = 0$ if and only if either $\alpha - \beta = 0$ or M is conformally flat.

Proof. Assume that M is an n-dimensional $N(k)$-quasi Einstein manifold and satisfies the condition $\hat{P}(\xi, X).C = 0$. Then we can write

\[
0 = \hat{P}(\xi, X)C(Y, Z)W - C(\hat{P}(\xi, X)Y, Z)W
\]

(3.8)

\[
- C(Y, \hat{P}(\xi, X)Z)W + C(Y, Z)\hat{P}(\xi, X)W
\]

for all vector fields X, Y, Z, W on M.

Using (3.7), in (3.8) we obtain

\[
0 = b\left[\frac{(\alpha - \beta)}{n} \right] \{C(Y, Z, W, X)\xi - \eta (C(Y, Z)W)X
\]

\[
- g(X, Y)C(\xi, Z)W + \eta (Y)C(X, Z)
\]

\[
- g(X, Z)C(Y, \xi)W + \eta (Z)C(Y, X)W
\]

\[
- g(X, W)C(Y, Z)\xi + \eta (W)C(Y, Z)X
\]

(3.9)

\[
+ \beta \{\eta (X)\eta (C(Y, Z)W)\xi - \eta (C(Y, Z)W)\eta (X)\eta (Y)C(X, Z)W
\]

\[
- \eta (X)\eta (Y)C(\xi, Z)W + \eta (Y)C(X, Z)W
\]

\[
- \eta (X)\eta (Z)C(Y, \xi)W + \eta (Z)C(Y, X)W
\]

\[
- \eta (X)\eta (W)C(Y, Z)\xi + \eta (W)C(Y, Z)X\}.
\]
Since \(b \neq 0 \) we have
\[
0 = \frac{\alpha - \beta}{n} [C(Y, Z, W, X)\xi - \eta(C(Y, Z)W)X
\]
\[
- g(X, Y)C(\xi, Z)W + \eta(Y)C(X, Z)W
\]
\[
- g(X, Z)C(Y, \xi)W + \eta(Z)C(Y, X)W
\]
\[
- g(X, W)C(Y, Z)\xi + \eta(W)C(Y, Z)X
\]
\[
+ \beta\{\eta(X)\eta(C(Y, Z)W)\xi - \eta(C(Y, Z)W)X
\]
\[
- \eta(X)\eta(Y)C(\xi, Z)W + \eta(Y)C(X, Z)W
\]
\[
- \eta(X)\eta(Z)C(Y, \xi)W + \eta(Z)C(Y, X)W
\]
\[
- \eta(X)\eta(W)C(Y, Z)\xi + \eta(W)C(Y, Z)X.\]
\[
(3.10)
\]
Taking the inner product of (3.9) by \(\xi \), we obtain
\[
0 = \frac{\alpha - \beta}{n} [C(Y, Z, W, X)\eta(X)
\]
\[
- g(X, Y)\eta(C(\xi, Z)W) + \eta(Y)\eta(C(X, Z)W)
\]
\[
- g(X, Z)\eta(C(Y, \xi)W) + \eta(Z)\eta(C(Y, X)W)
\]
\[
- g(X, W)\eta(C(Y, Z)\xi) + \eta(W)\eta(C(Y, Z)X)
\]
\[
+ \beta\{\eta(X)\eta(C(Y, Z)W) - \eta(C(Y, Z)W)\eta(X)
\]
\[
- \eta(X)\eta(Y)\eta(C(\xi, Z)W) + \eta(Y)\eta(C(X, Z)W)
\]
\[
- \eta(X)\eta(Z)\eta(C(Y, \xi)W) + \eta(Z)\eta(C(Y, X)W)
\]
\[
- \eta(X)\eta(W)\eta(C(Y, Z)\xi) + \eta(W)\eta(C(Y, Z)X).\]
\[
(3.11)
\]
From (3.2) in (3.10), we have
\[
0 = \frac{\alpha - \beta}{n} [C(Y, Z, W, X)].
\]
\[
(3.12)
\]
Then either \(\alpha - \beta = 0 \) or
\[
(3.13)
C(Y, Z, W, X) = 0,
\]
i.e., \(M \) is conformally flat. The converse statement is trivial. This completes the proof of the theorem. \(\square \)

Corollary 3.4. Let \(M \) be an \(N(k) \)-quasi Einstein manifold. Then \(M \) satisfies the condition \(P(\xi, X)C = 0 \) if and only if \(M \) is conformally flat.

4. The quasi-conformal curvature tensor of an \(N(k) \)-quasi Einstein manifold

Let \((M^n, g) \) be a Riemannian manifold, the quasi-conformal curvature tensor \[14\], is defined by
\[\tilde{C}(X, Y)Z = \lambda R(X, Y)Z + \mu \{ S(Y, Z)X - S(X, Z)Y + g(Y, Z)QX - g(X, Z)QY \} \]
\[- \frac{r}{n} \left[\frac{\lambda}{n-1} + 2\mu \right] \{ g(Y, Z)X - g(X, Z)Y \}, \]
where \(Q \) is the Ricci operator. Also we have [4]
\[(4.2) \quad \eta(\tilde{C}(X, Y)Z) = \frac{b}{n} \left[\mu(n - 2) + \lambda \right] \{ g(Y, Z)\eta(X) - g(X, Z)\eta(Y) \}. \]

If \(\lambda = 1 \) and \(\mu = -\frac{1}{n-1} \), then the quasi-conformal curvature tensor is reduced to the conformal curvature tensor [8].

Theorem 4.1. Let \(M \) be an \(n \)-dimensional \(N(k) \)-quasi Einstein manifold. Then \(M \) satisfies the condition \(\tilde{C} \in \{ \xi, X \}S = 0 \) if and only if \(\mu(2 - n) = \lambda \).

Proof. Assume that \(M \) is an \(n \)-dimensional \(N(k) \)-quasi Einstein manifold. The condition \(\tilde{C} \in \{ \xi, X \}S = 0 \) implies that
\[(4.3) \quad S(\tilde{C}(\xi, X)Y, Z) + S(Y, \tilde{C}(\xi, X)Z) = 0. \]
In view of (1.1) in (4.3) we get
\[(4.4) \quad \tilde{C}(\xi, X).S = b\eta(\tilde{C}(\xi, X)Y)\eta(Z) + \eta(Y)\eta(\tilde{C}(\xi, X)Z). \]
From (4.2) in (4.4) we have
\[(4.5) \quad 0 = \frac{b^2}{n} \left[\mu(n - 2) + \lambda \right] \{ g(X, Z)\eta(Y) + g(X, Y)\eta(Z) - 2\eta(X)\eta(Y)\eta(Z) \}. \]
From (4.5), by a contraction, we get
\[(4.6) \quad (n - 1)\frac{b^2}{n} \left[\mu(n - 2) + \lambda \right] = 0. \]
Since \(b \neq 0 \), from (4.6) we have
\[(4.7) \quad \mu(n - 2) + \lambda = 0. \]
From (4.7) we get \(\mu(2 - n) = \lambda \). The converse statement is trivial. This completes the proof of the theorem. \(\square \)

If \(P \) is a projective curvature tensor in an \(n \)-dimensional \(N(k) \)-quasi Einstein manifold, we have [7]
\[(4.8) \quad P(\xi, X)Y = \frac{b}{n-1} \left[g(X, Y)\xi - \eta(X)\eta(Y)\xi \right]. \]
Next, we have the following theorem.

Theorem 4.2. Let \(M \) be an \(n \)-dimensional \(N(k) \)-quasi Einstein manifold. Then \(M \) satisfies the condition \(P(\xi, X)\tilde{C} = 0 \) if and only if \(\lambda + (n - 2)\mu = 0. \)
Assume that \(s \) satisfies the condition \(P(\xi, X) \). Then we can write
\[
0 = P(\xi, X) \tilde{C}(Y, Z) W - \tilde{C}(P(\xi, X) Y, Z) W
\]
for all vector fields \(X, Y, Z, W \) on \(M \).

Using (4.8), in (4.9) we obtain
\[
0 = \frac{b}{n-1} \left\{ \tilde{C}(Y, Z, W, X) \xi - \eta(X) \eta(\tilde{C}(Y, Z) W) \xi
- g(X, Y) \tilde{C}(\xi, Z) W + \eta(X) \eta(Y) \tilde{C}(\xi, Z) W
- g(X, Z) \tilde{C}(Y, \xi) W + \eta(X) \eta(Z) \tilde{C}(Y, \xi) W
- g(X, W) \tilde{C}(Y, Z) \xi + \eta(X) \eta(W) \tilde{C}(Y, Z) \xi \right\}.
\]

Since \(b \neq 0 \) we have
\[
0 = \tilde{C}(Y, Z, W, X) \xi - \eta(X) \eta(\tilde{C}(Y, Z) W) \xi
- g(X, Y) \tilde{C}(\xi, Z) W + \eta(X) \eta(Y) \tilde{C}(\xi, Z) W
- g(X, Z) \tilde{C}(Y, \xi) W + \eta(X) \eta(Z) \tilde{C}(Y, \xi) W
- g(X, W) \tilde{C}(Y, Z) \xi + \eta(X) \eta(W) \tilde{C}(Y, Z) \xi.
\]

Taking the inner product of (4.10) by \(\xi \), we obtain
\[
0 = \tilde{C}(Y, Z, W, X) - \eta(X) \eta(\tilde{C}(Y, Z) W)
- g(X, Y) \eta(\tilde{C}(\xi, Z) W) + \eta(X) \eta(Y) \eta(\tilde{C}(\xi, Z) W)
- g(X, Z) \eta(\tilde{C}(Y, \xi) W) + \eta(X) \eta(Z) \eta(\tilde{C}(Y, \xi) W)
- g(X, W) \eta(\tilde{C}(Y, Z) \xi) + \eta(X) \eta(W) \eta(\tilde{C}(Y, Z) \xi).
\]

From (4.2) in (4.11), we get
\[
0 = \tilde{C}(Y, Z, W, X) - \frac{b}{n} \left\{ \mu(n-2) + \lambda \right\} \left\{ g(X, Y) g(Z, W)
- g(X, Z) g(Y, W) + g(X, Z) \eta(Y) \eta(W) - g(X, Y) \eta(Z) \eta(W) \right\}.
\]

Now using (4.1) in (4.12), we have
\[
0 = \lambda R(Y, Z, W, X) + \mu \left\{ S(Z, W) g(Y, X) - S(Y, W) g(Y, X) + g(Z, W) S(X, Y) - g(Y, W) S(X, Z) \right\}
- r \left[\frac{\lambda}{n-1} + 2 \mu \right] \left\{ g(Z, W) g(X, Y) - g(Y, W) g(X, Z) \right\}
- \frac{b}{n} \left\{ \mu(n-2) + \lambda \right\} \left\{ g(X, Y) g(Z, W) - g(X, Z) g(Y, W)
+ g(X, Z) \eta(Y) \eta(W) - g(X, Y) \eta(Z) \eta(W) \right\}.
\]
Also from (4.13), by contraction we have

\[
(4.14) \quad 0 = [\mu(n - 2) + \lambda] \left\{ S(Z, W) - (a + b)g(Z, W) - \frac{b(n - 1)}{n} \eta(Z)\eta(W) \right\}.
\]

Then either \(\mu(n - 2) + \lambda = 0\) or

\[
(4.15) \quad S(Z, W) - (a + b)g(Z, W) - \frac{b(n - 1)}{n} \eta(Z)\eta(W) = 0.
\]

Assume that \(\mu(n - 2) + \lambda \neq 0\). Then from (4.15) we get

\[
(4.16) \quad S(Z, \xi) = \left[(a + b) + \frac{b(n - 1)}{n} \right] \eta(Z).
\]

Then from (1.4) and (4.15) we have \(\frac{b(n - 1)}{n} = 0\). Since \(M\) is an \(N(k)\)-quasi Einstein manifold this is not possible. The converse statement is trivial. This completes the proof of the theorem. \(\square\)

Theorem 4.3. Let \(M\) be an \(N(k)\)-quasi Einstein manifold. If \(M\) satisfies the condition \(\tilde{P}(\xi, X)\tilde{C} = 0\), then \(\alpha - \beta = 0\) or \(\alpha - \beta = 0\) or \(\mu(n - 2) + \lambda = 1\).

Proof. Assume that \(M\) is an \(n\)-dimensional \(N(k)\)-quasi Einstein manifold and satisfies the condition \(\tilde{P}(\xi, X)\tilde{C} = 0\). Then we can write

\[
(4.17) \quad 0 = \tilde{P}(\xi, X)\tilde{C}(Y, Z)W - \tilde{C}(\tilde{P}(\xi, X)Y, Z)W
- \tilde{C}(Y, \tilde{P}(\xi, X)Z)W - \tilde{C}(Y, Z)\tilde{P}(\xi, X)W
\]

for all vector fields \(X, Y, Z, W\) on \(M\).

Using (3.7), in (4.17) we obtain

\[
0 = b\left[\frac{(\alpha - \beta)}{n} \{ \tilde{C}(Y, Z, W, X)\xi - \eta(\tilde{C}(Y, Z)W)X
- g(X, Y)\tilde{C}(\xi, Z)W + \eta(Y)\tilde{C}(X, Z)W
- g(X, Z)\tilde{C}(Y, \xi)W + \eta(Z)\tilde{C}(Y, X)W
- \tilde{C}(W, Z)\xi + \eta(W)\tilde{C}(Y, Z)X
+ {\beta(\eta(X)\eta(\tilde{C}(Y, Z)W)\xi - \eta(\tilde{C}(Y, Z)W)X}
- \eta(X)\eta(Y)\tilde{C}(\xi, Z)W + \eta(Y)\tilde{C}(X, Z)W
- \eta(X)\eta(Z)\tilde{C}(Y, \xi)W + \eta(Z)\tilde{C}(Y, X)W
- \eta(X)\eta(W)\tilde{C}(Y, Z)\xi + \eta(W)\tilde{C}(Y, Z)X \}
ight].
\]
Since \(b \neq 0 \) we have

\[
0 = \frac{(\alpha - \beta)}{n} \{ \tilde{C}(Y, Z, W, X)\xi - \eta(\tilde{C}(Y, Z)W)X \\
- g(X, Y)\tilde{C}(\xi, Z)W + \eta(Y)\tilde{C}(X, Z)W \\
- g(X, Z)\tilde{C}(\xi, X)W + \eta(Z)\tilde{C}(Y, X)W \\
- g(X, W)\tilde{C}(Y, Z)\xi + \eta(W)\tilde{C}(Y, Z)X \}
\]

\[(4.18)\]

Taking the inner product of (3.9) by \(\xi \), we obtain

\[
0 = \frac{(\alpha - \beta)}{n} \{ \tilde{C}(Y, Z, W, X) - \eta(\tilde{C}(Y, Z)W)\eta(X) \\
- g(X, Y)\eta(\tilde{C}(\xi, Z)W) + \eta(Y)\eta(\tilde{C}(X, Z)W) \\
- g(X, Z)\eta(\tilde{C}(\xi, X)W) + \eta(Z)\eta(\tilde{C}(Y, X)W) \\
- g(X, W)\eta(\tilde{C}(Y, Z)\xi) + \eta(W)\eta(\tilde{C}(Y, Z)X) \}
\]

\[(4.19)\]

From (4.2) in (4.19), we have

\[
0 = \frac{b}{n} [\mu(n - 2) + \lambda] \left(\frac{\alpha - \beta}{n} \right) \{ \tilde{C}(Y, Z, W, X) + g(Y, W)g(X, Z) \\
- g(Z, W)g(X, Y) \} + \beta \{ g(X, Z)\eta(Y)\eta(W) - g(X, Y)\eta(Z)\eta(W) \}.
\]

Taking \(X = Y = \xi \) in (4.20) we obtain

\[
0 = \frac{b}{n} [\mu(n - 2) + \lambda] \left(\frac{\alpha - \beta}{n} \right) \left(\frac{b}{n} [\mu(n - 2) + \lambda] - 1 \right) \{ g(Z, W) - \eta(Z)\eta(W) \}.
\]

(4.21)

Since \(M \) is an \(N(k) \)-quasi Einstein manifold then \(b \neq 0 \) and \(g(Z, W) \neq \eta(Z)\eta(W) \). Then from (4.21) we have

\[
0 = [\mu(n - 2) + \lambda] \left(\frac{\alpha - \beta}{n} \right) \left(\frac{b}{n} [\mu(n - 2) + \lambda] - 1 \right).
\]

(4.22)

From (4.22), it follows that \(\mu(n - 2) + \lambda = 0 \) or \(\alpha - \beta = 0 \) or \(\mu(n - 2) + \lambda = 1 \). This completes the proof of the theorem. \(\Box \)
References