EXTENSIONS OF EXTENDED SYMMETRIC RINGS

TAI KEUN KWAK

Reprinted from the
Bulletin of the Korean Mathematical Society
Vol. 44, No. 4, November 2007

©2007 The Korean Mathematical Society
EXTENSIONS OF EXTENDED SYMMETRIC RINGS

TAI KEUN KWAK

ABSTRACT. An endomorphism \(\alpha \) of a ring \(R \) is called right (left) symmetric if whenever \(abc = 0 \) for \(a, b, c \in R \), \(ac\alpha(b) = 0 \) \((\alpha(b)ac = 0)\). A ring \(R \) is called right (left) \(\alpha \)-symmetric if there exists a right (left) symmetric endomorphism \(\alpha \) of \(R \). The notion of an \(\alpha \)-symmetric ring is a generalization of \(\alpha \)-rigid rings as well as an extension of symmetric rings. We study characterizations of \(\alpha \)-symmetric rings and their related properties including extensions. The relationship between \(\alpha \)-symmetric rings and (extended) Armendariz rings is also investigated, consequently several known results relating to \(\alpha \)-rigid and symmetric rings can be obtained as corollaries of our results.

1. Introduction

Recall that a ring is reduced if it has no nonzero nilpotent elements. Lambek called a ring \(R \) symmetric [13] provided \(abc = 0 \) implies \(acb = 0 \) for \(a, b, c \in R \). Every reduced ring is symmetric ([16, Lemma 1.1]) but the converse does not hold by [2, Example II.5]. Cohn called a ring \(R \) reversible [5] if \(ab = 0 \) implies \(ba = 0 \) for \(a, b \in R \). Historically, some of the earliest known results about reversible rings (although not so called at the time) were due to Habeb [6]. It is obvious that commutative rings are symmetric and symmetric rings are reversible; but the converses do not hold by [2, Examples I.5 and II.5] and [14, Examples 5 and 7].

Another generalization of a reduced ring is an Armendariz ring. Rege and Chhawchharia called a ring \(R \) Armendariz [15] if whenever any polynomials \(f(x) = a_0 + a_1x + \cdots + a_mx^m \), \(g(x) = b_0 + b_1x + \cdots + b_nx^n \in R[x] \) satisfy \(f(x)g(x) = 0 \), then \(a_ib_j = 0 \) for each \(i \) and \(j \). This nomenclature was used by them since it was Armendariz who initially showed that a reduced ring always satisfies this condition ([3, Lemma 1]).

For a ring \(R \) with a ring endomorphism \(\alpha : R \to R \), a skew polynomial ring (also called an Ore extension of endomorphism type) \(R[x; \alpha] \) of \(R \) is the ring obtained by giving the polynomial ring over \(R \) with the new multiplication \(xr = \alpha(r)x \) for all \(r \in R \).

Received March 6, 2007.
2000 Mathematics Subject Classification. Primary 16W20, 16U80; Secondary 16S36.
Key words and phrases. reduced rings, symmetric rings, (extended) Armendariz rings.
This work was supported by the Daejin University Research Grants in 2007.

©2007 The Korean Mathematical Society
The Armendariz property of a ring was extended to skew polynomial rings but with skewed scalar multiplication in [8, 9]: For an endomorphism α of a ring R, R is called α-Armendariz (resp. α-skew Armendariz) if for $p = \sum_{i=0}^{m} a_i x^i$ and $q = \sum_{j=0}^{n} b_j x^j$ in $R[x; \alpha]$, $pq = 0$ implies $a_i b_j = 0$ (resp. $a_i \alpha(b_j) = 0$) for all $0 \leq i \leq m$ and $0 \leq j \leq n$.

On the other hand, an endomorphism α of a ring R is called rigid [12] if $a \alpha(a) = 0$ implies $a = 0$ for $a \in R$, and R is an α-rigid ring [7] if there exists a rigid endomorphism α of R. Note that any rigid endomorphism of a rigid endomorphism is a monomorphism, and α-rigid rings are reduced rings by [7, Proposition 5]. Any α-rigid ring is α-Armendariz [7, Proposition 6], but the converse is not true, in general; every α-Armendariz ring is α-skew Armendariz, but the converse does not hold by [9, Theorem 1.7 and Example 1.8]. In [8, Proposition 3], R is an α-rigid ring if and only if $R[x; \alpha]$ is reduced.

Motivated by the above, in this paper we introduce the notion of an α-symmetric ring for an endomorphism α of a ring R, as a generalization of α-rigid rings and an extension of symmetric rings, and study α-symmetric rings and their related properties. The relationship between α-symmetric rings and extended Armendariz rings is also investigated. Consequently, several known results are obtained as corollaries of our results.

Throughout this paper R denotes an associative ring with identity and α denotes a nonzero and non identity endomorphism, unless specified otherwise.

2. Properties of α-symmetric rings

We begin with the following definition.

Definition 2.1. An endomorphism α of a ring R is called right (left) symmetric if whenever $abc = 0$ for $a, b, c \in R$, $ac \alpha(b) = 0$ (resp. $\alpha(b)ac = 0$). A ring R is called right (left) α-symmetric if there exists a right (left) symmetric endomorphism α of R. R is α-symmetric if it is both right and left α-symmetric.

Observe that every subring S with $\alpha(S) \subseteq S$ of a right α-symmetric ring is also right α-symmetric; and any domain R is α-symmetric for any endomorphism α of R, but the converse does not hold (see Example 2.7(1) below).

The next example shows that the concept of α-symmetric is not left-right symmetric.

Example 2.2. Let \mathbb{Z} be the ring of integers. Consider a ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{Z} \right\}.$$

Note that for $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in R$, we have $AB = O$ but $BA \neq O$. Thus R is not reversible, and so R is not symmetric.

(i) Let $\alpha : R \longrightarrow R$ be an endomorphism defined by
EXTENSIONS OF EXTENDED SYMMETRIC RINGS 779

\[\alpha \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}. \]

If \(ABC = O \) for \(A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, B = \begin{pmatrix} a' & b' \\ 0 & c' \end{pmatrix} \) and \(C = \begin{pmatrix} a'' & b'' \\ 0 & c'' \end{pmatrix} \in R \), then we get \(aa'a'' = 0 \) and so \(aa''a' = 0 \). Thus this yields \(AC\alpha(B) = O \), and hence \(R \) is right \(\alpha \)-symmetric. However, for \(A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \)

and \(C = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in R \) with \(ABC = O \), we have \(\alpha(B)AC \neq O \), and thus \(R \) is not left \(\alpha \)-symmetric.

(ii) Let \(\beta : R \rightarrow R \) be an endomorphism defined by

\[\beta \left(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \right) = \begin{pmatrix} 0 & 0 \\ 0 & c \end{pmatrix}. \]

By the similar method to (i), we can show that \(R \) is left \(\beta \)-symmetric. However, for \(A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)

we have \(AC\beta(B) \neq O \), and thus \(R \) is not right \(\beta \)-symmetric.

Proposition 2.3. (1) For a ring \(R \), \(R \) is right \(\alpha \)-symmetric if and only if \(ABC = 0 \) implies \(AC\alpha(B) = 0 \) for any three nonempty subsets \(A, B \) and \(C \) of \(R \).

(2) Let \(R \) be a reversible ring. \(R \) is right \(\alpha \)-symmetric if and only if \(R \) is left \(\alpha \)-symmetric.

Proof. (1) It suffices to show that \(ABC = 0 \) for any three nonempty subsets \(A, B \) and \(C \) of \(R \) implies \(AC\alpha(B) = 0 \), when \(R \) is right \(\alpha \)-symmetric. Let \(ABC = 0 \). Then \(abc = 0 \) for \(a \in A, b \in B \) and \(c \in C \), and hence \(ac\alpha(b) = 0 \) by the condition. Thus \(AC\alpha(B) = \sum_{a \in A, b \in B, c \in C} ac\alpha(b) = 0 \).

(2) Let \(abc = 0 \) for \(a, b, c \in R \). If \(R \) is right \(\alpha \)-symmetric, then \(ac\alpha(b) = 0 \). Since \(R \) is reversible, we have \(\alpha(b)ac = 0 \) and hence \(R \) is left \(\alpha \)-symmetric. The converse is similar. \(\square \)

Example 2.2 shows that the condition “\(R \) is reversible” in Proposition 2.3(2) cannot be dropped as well as there exists a right symmetric endomorphism \(\alpha \) of a ring \(R \) such that \(R \) is not symmetric. The next example provides that there exists a commutative reduced ring \(R \) which is not \(\alpha \)-symmetric for some endomorphism \(\alpha \) of \(R \).

Example 2.4. Let \(\mathbb{Z}_2 \) be the ring of integers modulo 2 and consider a ring \(R = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) with the usual addition and multiplication. Then \(R \) is a commutative reduced ring, and so \(R \) is symmetric. Now, let \(\alpha : R \rightarrow R \) be defined by \(\alpha((a, b)) = (b, a) \). Then \(\alpha \) is an automorphism of \(R \). For \(a = (1, 0), b = (0, 1), c = (1, 1) \in R \), \(abc = 0 \) but \(ac\alpha(b) = (1, 0) \neq 0 \), and thus \(R \) is not right \(\alpha \)-symmetric.
Recently, the reversible property of a ring is extended to a ring endomorphism in [4] as follows: An endomorphism α of a ring R is called right reversible if whenever $ab = 0$ for $a, b \in R$, $ba(a) = 0$. A ring R is called right α-reversible if there exists a right reversible endomorphism α of R. The notion of an α-reversible ring is a generalization of α-rigid rings as well as an extension of reversible rings.

Theorem 2.5. Let R be a right α-symmetric ring. Then we have the following.

1. For $a, b, c \in R$, $abc = 0$ implies $a\alpha^n(b) = 0$, $b\alpha^n(a) = 0$, and $aba^n(c) = 0$ for any positive integer n, especially, R is a right α-reversible ring.

2. Let α be a monomorphism of R. Then we have the following.

 i. R is a symmetric ring.

 ii. For $a, b, c \in R$ $abc = 0$ implies $\alpha^n(a)bc = 0$ and $aa^n(b)c = 0$ for any positive integer n. Conversely, if $\alpha^n(a)bc = 0$, $aa^n(b)c = 0$, or $aba^n(c) = 0$ for some positive integer m, then $abc = 0$.

Proof. (1) Let $a, b, c \in R$ with $abc = 0$. Since R is right α-symmetric, $a\alpha^n(b) = 0$. Then $0 = a\alpha^n(b) = (ac)\alpha(b) \cdot 1$ implies $a\alpha^n(b) = 0$. Continuing this process, we have $a\alpha^n(b) = 0$ for any positive integer n. Similarly, $1 \cdot a(bc) = 0$ implies $b\alpha^n(a) = 0$. By the same method as above, we obtain $b\alpha^n(a) = 0$ for any positive integer n. Finally, $0 = abc = (ab)c \cdot 1$ implies $aba^n(c) = 0$, and thus $aba^n(c) = 0$ for any positive integer n.

(2) Suppose that α is a monomorphism. (i): Let $a, b, c \in R$ with $abc = 0$. Then $a\alpha^n(b) = 0$, and so $\alpha(b)\alpha(ac) = 0$ by (1). Since α is a monomorphism, $bac = 0$ and $acb = 0$. Thus R is symmetric. (ii): Note that R is symmetric and so reversible. Let $abc = 0$. Then $b\alpha^n(a) = 0$ by (1). Since R is reversible, $\alpha^n(a)bc = 0$. Next, from $abc = 0$ we have $a\alpha^n(b) = 0$ by (1). Since R is symmetric, $a\alpha^n(b)c = 0$. Conversely, if $\alpha^n(a)bc = 0$ for some positive integer m then $\alpha^n(a)\alpha^n(bc) = \alpha^n(abc) = 0$ by (i), and thus $abc = 0$, since α is a monomorphism. Similarly, if $aa^n(b)c = 0$ then $a\alpha^n(b) = 0$, since R is symmetric. Hence $\alpha^n(ac)\alpha^n(b) = 0$ by (i), and $acb = 0$ and so $abc = 0$. By the same method as above, we can obtain that $aba^n(c) = 0$ implies $abc = 0$. □

Corollary 2.6. Every symmetric ring is reversible.

Notice that for any positive integer n, “$\alpha^n(b) = 0$” is equivalent to “$\alpha R\alpha^n(b) = 0$”, when R is a right α-symmetric ring with $ab = 0$ for $a, b \in R$. For, $abr = 0$ implies $ara(b) = 0$ for any $r \in R$. This shows that $dra^n(b) = 0$ for any positive integer n and any $r \in R$ from Theorem 2.5(1), and thus $a\alpha^n(b) = 0$.

We remark that the converse of Theorem 2.5(1) does not hold. For example, the ring R with an endomorphism α in Example 2.2(1) is right α-symmetric. However, for $A = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix}$ and $B \in R$, we have $A\alpha^n(B) = O = B\alpha^n(A)$ for any positive integer n but $\overline{AB} \neq O$.
In the next example, part (1) shows that there exists a right α-symmetric ring R for an automorphism α, but R is not semiprime and so not α-rigid, and part (2) illuminates that there exists a commutative domain and an α-symmetric ring R, but R is not α-rigid where α is not a monomorphism.

Example 2.7. (1) Consider a ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

Let $\alpha : R \to R$ be an endomorphism defined by

$$\alpha \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}.$$

Clearly, R is not semiprime and hence R is not α-rigid. Note that α is an automorphism. Moreover, R is right α-symmetric: Indeed, let $ABC = O$ for $A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$. $B = \begin{pmatrix} a' & b' \\ 0 & a' \end{pmatrix}$ and $C = \begin{pmatrix} a'' & b'' \\ 0 & a'' \end{pmatrix} \in R$, then we get $aa'a'' = 0$ and $aa'b'' + ab'a'' + ba'a'' = 0$. If $a = 0$ then $ba'a'' = 0$, if $a' = 0$ then $ab'a'' = 0$, and $a'' = 0$ then $ab'b'' = 0$. These imply that $aa''a' = 0$ and $-aa'b' + ab'a' + ba''a' = 0$. Thus $AC\alpha(B) = O$, and hence R is right α-symmetric.

(2) Let $R = F[x]$ be the polynomial ring over a field F. Define $\alpha : R \to R$ by $\alpha(f(x)) = f(0)$ where $f(x) \in R$. Then R is a commutative domain (and so reduced), but α is not a monomorphism. Since R is a domain, R is right α-symmetric for any endomorphism α of R. However, R is not α-rigid by [8, Example 5(2)].

The class of semiprime rings and the class of right α-symmetric rings do not depend on each other by Example 2.4 and Example 2.7(1). There exists a skew polynomial ring $R[x; \alpha]$ over a symmetric ring R which is not a symmetric ring. For example, consider the commutative ring $R = \mathbb{Z}_2 \oplus \mathbb{Z}_2$ and the automorphism α of R defined by $\alpha((a, b)) = (b, a)$, as in Example 2.4. Then R is a symmetric ring, but $R[x; \alpha]$ is not reversible hence not symmetric: Indeed, for $p = (1, 0), q = (0, 1)x \in R[x; \alpha]$, we get $pq = 0$ but $0 \neq (0, 1)q = qp$.

However, we have the following theorem.

Theorem 2.8. (1) For a ring R, R is α-rigid if and only if R is semiprime and right α-symmetric and α is a monomorphism.

(2) If the skew polynomial ring $R[x; \alpha]$ of a ring R is a symmetric ring, then R is α-symmetric.

Proof. (1) Let R be α-rigid. Note that any α-rigid ring is reduced and α is a monomorphism by [7, p. 218]. We show that R is right α-symmetric. Assume that $abc = 0$ for $a, b, c \in R$. Then we obtain $bac = 0$, since R is reduced (and so symmetric). Thus $a\alpha(c)b\alpha(a\alpha(b)) = a\alpha(b\alpha(c))\alpha^2(b) = 0$. Since R is α-rigid, $a\alpha(b) = 0$ and thus R is right α-symmetric.

The converse follows from [4, Proposition 2.5(3)] and Theorem 2.5(1).
(2) Suppose that \(abc = 0 \) for \(a, b, c \in R \). Let \(p = a, q = b \) and \(h = cx \) in \(R[x; \alpha] \). Then \(pqh = abcx = 0 \in R[x; \alpha] \). Since \(R[x; \alpha] \) is symmetric, we get \(0 = pqh = (ac)xb = ac\alpha(b)x \), and so \(ac\alpha(b) = 0 \). Thus \(R \) is right \(\alpha \)-symmetric and therefore \(R \) is \(\alpha \)-symmetric by Proposition 2.3(2).

Corollary 2.9 ([10, Proposition 2.7(1)]). A ring \(R \) is reduced if and only if \(R \) is a semiprime and symmetric ring.

Observe that the class of right \(\alpha \)-symmetric rings and the class of \(\alpha \)-Armendariz rings do not depend on each other by Example 2.7(2) and [11, Example 14].

Theorem 2.10. Let \(R \) be an \(\alpha \)-Armendariz ring. The following statements are equivalent:

1. \(R[x; \alpha] \) is symmetric.
2. \(R \) is \(\alpha \)-symmetric.
3. \(R \) is right \(\alpha \)-symmetric.
4. \(R \) is symmetric.

Proof. (1)\(\Leftrightarrow \) (4) by [9, Theorem 3.6 (1)] and (1)\(\Rightarrow \) (2) by Theorem 2.8 (2). (2)\(\Rightarrow \) (3) is trivial. Now we show (3)\(\Rightarrow \) (4). Suppose \(abc = 0 \) for \(a, b, c \in R \).

Then \(ac\alpha(b) = 0 \), and so \(acb = 0 \) by [9, Proposition 1.3 (2)]. Thus \(R \) is symmetric. \(\square \)

The next result is a direct consequence of Theorem 2.10.

Corollary 2.11 ([10, Proposition 3.4]). Let \(R \) be an Armendariz ring. \(R \) is symmetric if and only if \(R[x] \) is symmetric.

Notice that the converse of Theorem 2.8(2) does not hold and the condition “\(R \) is an \(\alpha \)-Armendariz ring” in Theorem 2.10 are not superfluous by Example 2.7(2): Indeed, consider \(A = R[y; \alpha] = F[x][y; \alpha] \). Now, let \(p = 1, q = xy \) and \(h = x \in A \). Then \(pqh = 0 \), but \(phq = x^2y \not= 0 \). Hence \(A \) is not symmetric.

Note that \(R \) is not \(\alpha \)-Armendariz by [9, Example 1.9].

3. Extensions of \(\alpha \)-symmetric rings

Given a ring \(R \) and an \((R,R)\)-bimodule \(M \), the **trivial extension** of \(R \) by \(M \) is the ring \(T(R,M) = R \oplus M \) with the usual addition and the following multiplication:

\[
(r_1, m_1)(r_2, m_2) = (r_1r_2, r_1m_2 + m_1r_2).
\]

This is isomorphic to the ring of all matrices \(\begin{pmatrix} r & m \\ 0 & r \end{pmatrix} \), where \(r \in R \) and \(m \in M \) and the usual matrix operations are used.

For an endomorphism \(\alpha \) of a ring \(R \) and the trivial extension \(T(R,R) \) of \(R \), \(\bar{\alpha} : T(R,R) \longrightarrow T(R,R) \) defined by

\[
\bar{\alpha} \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} \alpha(a) & \alpha(b) \\ 0 & \alpha(a) \end{pmatrix}
\]

is an endomorphism of $T(R,R)$. Since $T(R,0)$ is isomorphic to R, we can identify the restriction of $\bar{\alpha}$ on $T(R,0)$ to α.

Note that the trivial extension of a reduced ring is symmetric by [10, Corollary 2.4]. For a right α-symmetric ring R, $T(R,R)$ needs not to be an $\bar{\alpha}$-symmetric ring by the next example.

Example 3.1. Consider the right α-symmetric ring

$$R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

in Example 2.7(1) where α is defined by

$$\alpha \left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \right) = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}.$$

For

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad C = \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \in T(R,R),$$

and

$$ABC = O$$

$AC\bar{\alpha}(B) \neq O$. Thus R is not $\bar{\alpha}$-symmetric.

Recall that another generalization of a symmetric ring is a semicommutative ring. A ring R is semicommutative if $ab = 0$ implies $aRb = 0$ for $a, b \in R$. Historically, some of the earliest results known to us about semicommutative rings (although not so called at the time) was due to Shin [16]. He proved that any symmetric ring is semicommutative ([16, Proposition 1.4]) but the converse does not hold ([16, Example 5.4(a)]). Semicommutative rings were also studied under the name **zero insertive** by Habeb [6].

Proposition 3.2. Let R be a reduced ring. If R is an α-symmetric ring, then $T(R,R)$ is an $\bar{\alpha}$-symmetric ring.

Proof. Let $ABC = O$ for

$$A = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}, B = \begin{pmatrix} a' & b' \\ 0 & a' \end{pmatrix} \quad \text{and} \quad C = \begin{pmatrix} a'' & b'' \\ 0 & a'' \end{pmatrix} \in T(R,R).$$

Then we have

1. $aa'a'' = 0$; and
2. $aa'b'' + ab'a'' + ba'a'' = 0$.

In the following, we freely use the fact that R is a reduced ring if and only if for any $a, b \in R$, $ab^2 = 0$ (or, $a^2b = 0$) implies $ab = 0$; and every reduced ring
Let \(R \) be a symmetric ring. For any \(n \geq 3 \) and an endomorphism \(\alpha \) of a ring \(R \) is also extended to the endomorphism \(\overline{\alpha} : T_n \to T_n \) defined by \(\overline{\alpha}((a)) = (\alpha(a)) \).

The following example shows that \(T_n \) cannot be \(\overline{\alpha} \)-symmetric for any \(n \geq 3 \), even if \(R \) is an \(\alpha \)-rigid ring.

Example 3.4. Let \(\alpha \) be an endomorphism of an \(\alpha \)-rigid ring \(R \). Note that if \(R \) is an \(\alpha \)-rigid ring, then \(\alpha(e) = e \) for \(e^2 = e \in R \) by [7, Proposition 5]. In particular \(\alpha(1) = 1 \). First, we show that \(T_3 \) is not \(\overline{\alpha} \)-symmetric. For

\[
A = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{pmatrix}, \quad B = \begin{pmatrix}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
\end{pmatrix}, \quad C = \begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{pmatrix} \in T_3,
\]

\(ABC = O \). But we have \(AC\overline{\alpha}(B) = CB \neq O \in T_3 \).

In case of \(n \geq 4 \), we can also prove that \(T_n \) is not \(\overline{\alpha} \)-symmetric by the same method as the above.

Recall that if \(\alpha \) is an endomorphism of a ring \(R \), then the map \(\overline{\alpha} : R[x] \to R[x] \) defined by \(\overline{\alpha}(\sum_{i=0}^{m} a_i x^i) = \sum_{i=0}^{m} \alpha(a_i) x^i \) is an endomorphism of the polynomial ring \(R[x] \) and clearly this map extends \(\alpha \). The Laurent polynomial ring \(R[x, x^{-1}] \) with an indeterminate \(x \), consists of all formal sums \(\sum_{i=k}^{\infty} a_i x^i \), where \(a_i \in R \) and \(k, n \) are (possibly negative) integers. The map \(\overline{\alpha} : R[x, x^{-1}] \to R[x, x^{-1}] \) defined by \(\overline{\alpha}(\sum_{i=k}^{\infty} a_i x^i) = \sum_{i=k}^{\infty} \alpha(a_i) x^i \) extends \(\alpha \) and also is an endomorphism of \(R[x, x^{-1}] \). Multiplication is subject to \(xr = \alpha(r)x \) and \(rx^{-1} = x^{-1}\alpha(r) \).

The following results extend the class of right \(\alpha \)-symmetric rings.

Theorem 3.5. Let \(R \) be a ring.

(1) \(R[x] \) is right \(\overline{\alpha} \)-symmetric if and only if \(R[x, x^{-1}] \) is right \(\overline{\alpha} \)-symmetric.
(2) If R is an Armendariz ring, then R is right α-symmetric if and only if $R[x]$ is right $\bar{\alpha}$-symmetric.

Proof. (1) It is sufficient to show necessity. Let $f(x), g(x)$ and $h(x) \in R[x; x^{-1}]$ with $f(x)g(x)h(x) = 0$. Then there exists a positive integer n such that $f_1(x) = f(x)x^n, g_1(x) = g(x)x^n$ and $h_1(x) = h(x)x^n \in R[x]$, and so $f_1(x)g_1(x)h_1(x) = 0$. Since $R[x]$ is right $\bar{\alpha}$-symmetric, we obtain $f_1(x)h_1(x)\bar{\alpha}(g_1(x)) = 0$. Hence $f(x)h(x)\bar{\alpha}(g(x)) = x^{-3n}f_1(x)h_1(x)\bar{\alpha}(g_1(x)) = 0$. Thus $R[x; x^{-1}]$ is right $\bar{\alpha}$-symmetric.

(2) It also suffices to establish necessity. Let $f(x) = \sum_{i=0}^{m} a_ix^i, g(x) = \sum_{j=0}^{n} b_jx^j$ and $h(x) = \sum_{k=0}^{l} c_kx^k \in R[x]$ with $f(x)g(x)h(x) = 0$. By [1, Proposition 1], $a_ib_jc_k = 0$ for all i, j and k, and so $a_i\bar{\alpha}(b_j) = 0$ since R is Armendariz and right α-symmetric. This yields $f(x)h(x)\bar{\alpha}(g(x)) = 0$, and thus $R[x]$ is right $\bar{\alpha}$-symmetric. \hfill \square

Corollary 3.6. (1) [10, Lemma 3.2(2)] For a ring R, $R[x]$ is symmetric if and only if so is $R[x; x^{-1}]$.

(2) [10, Proposition 3.4] Let R be an Armendariz ring. R is symmetric if and only if $R[x]$ is symmetric.

Note that Example 2.2(i) and Example 2.4 show that Armendariz rings and right α-symmetric rings do not depend on each other.

For an ideal I of R, if $\alpha(I) \subseteq I$ then $\bar{\alpha}: R/I \rightarrow R/I$ defined by $\bar{\alpha}(a + I) = \alpha(a) + I$ is an endomorphism of a factor ring R/I. The homomorphic image of a symmetric ring may not necessarily be symmetric by [10, p.163]. One may conjecture that R is α-symmetric if for any right α-symmetric nonzero proper ideal I of R, R/I is $\bar{\alpha}$-symmetric, where I is considered as a ring without identity. However, the next example erases the possibility.

Example 3.7. For a field F, consider a ring $R = \left(\begin{array}{cc} F & F \\ 0 & F \end{array} \right)$ and an endomorphism α of R defined by

$$\alpha \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) = \left(\begin{array}{cc} a & -b \\ 0 & c \end{array} \right).$$

For a right ideal $I = \left(\begin{array}{cc} 0 & F \\ 0 & 0 \end{array} \right)$ of R, it can be easily checked that I is right α-symmetric and the factor ring

$$R/I = \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & c \end{array} \right) + I \mid a, c \in F \right\}$$

is reduced. Observe that R/I is $\bar{\alpha}$-symmetric, where $\bar{\alpha}$ is an identity map on R/I.

However, for $A = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$, $B = \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right)$ and $C = \left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array} \right) \in R$, we have $AC\alpha(B) \neq O$ and $ABC = O$. Thus R is not right α-symmetric.
Theorem 3.8. Let R be a reduced ring and n be any positive integer. If R is right α-symmetric with $\alpha(1) = 1$, then $R[x]/(x^n)$ is a right α-symmetric ring, where (x^n) is the ideal generated by x^n.

Proof. Let $S = R[x]/(x^n)$. If $n = 1$, then $S \cong R$. If $n = 2$, then S is α-symmetric by Proposition 3.2, since $S \cong T(R, R)$. Now, we assume $n \geq 3$.

Let $f = a_0 + a_1x + \cdots + a_{n-1}x^{n-1}, g = b_0 + b_1x + \cdots + b_{n-1}x^{n-1}$ and $h = c_0 + c_1x + \cdots + c_{n-1}x^{n-1} \in S$ with $fgf = 0$, where $x = x + (x^n)$. Note that $a_ib_jc_kx^{i+j+k} = 0$ for all i, j, k with $i + j + k \geq n$. Hence it suffices to show the cases $i + j + k \leq n - 1$. Since $fgf = 0$, we have the following equations:

(1) $a_0b_0c_0 = 0$.

(2) $a_0b_0c_1 + a_0b_1c_0 + a_1b_0c_0 = 0$.

(3) $a_0b_0c_2 + a_0b_1c_1 + a_0b_2c_0 + a_1b_1c_0 + a_2b_0c_0 = 0$.

Inductively we assume that $a_ib_jc_k = 0$ for $i + j + k = 0, 1, \ldots, (n-2)$.

We apply the above method to Eq.$(n-1)$. First, the induction hypotheses and Eq.$(n-1)$ give $a_0b_0c_0 = 0$ and $a_0b_0c_1 + a_0b_1c_0 = 0$; multiplying b_1c_0 gives $0 = a_0b_1(c_0)^2 = a_0b_1c_0$, so we have

$$(2)' \quad a_0b_0c_1 = 0, a_0b_1c_0 = 0 \quad \text{and} \quad a_1b_0c_0 = 0.$$

From Eqs.(1), $(2)'$ and (3), we get $a_2b_0c_0 = 0$ and

$$(3)' \quad a_0b_0c_2 + a_0b_1c_1 + a_0b_2c_0 + a_1b_1c_1 + a_2b_0c_1 + a_3b_1c_0 = 0,$$

in a similar way. If we multiply Eq.$(3)'$ on the right side by b_1c_0, b_0c_1, b_2c_0 and b_1c_1 respectively, then we obtain $a_1b_1c_0 = 0, a_1b_0c_1 = 0, a_0b_2c_0 = 0, a_0b_1c_1 = 0$, and $a_0b_0c_2 = 0$ in turn.

Inductively we assume that $a_ib_jc_k = 0$ for $i + j + k = 0, 1, \ldots, (n-2)$. We apply the above method to Eq.$(n-1)$. First, the induction hypotheses and Eq.$(n-1)$ give $a_0b_0c_0 = 0$ and

$$(n-1)' \quad a_0b_0c_{n-1} + a_0b_1c_{n-2} + \cdots + a_{n-2}b_0c_1 + a_{n-3}b_1c_0 = 0.$$

If we multiply Eq.$(n-1)'$ on the right side by b_1c_0, b_0c_1, \ldots, and b_1c_{n-2} respectively, then we obtain $a_{n-2}b_1c_0 = 0, a_{n-3}b_2c_1 = 0, \ldots, a_{n-3}b_2c_1 = 0$ and so $a_0b_0c_{n-1} = 0$, in turn. This shows that $a_ib_jc_k = 0$ for all i, j, k with $i + j + k = n - 1$. Consequently, $a_ib_jc_k = 0$ for all i, j, k with $i + j \leq n - 1$, and thus $a_{n-k}c_{n-k}^i(b_j) = 0$ for any positive integer t by Theorem 2.5(1). This yields $f\alpha(g) = 0$, and therefore S is right α-symmetric. □

Corollary 3.9 ([10, Theorem 2.3]). If R is a reduced ring, then $R[x]/(x^n)$ is a symmetric ring for any positive integer n.

Let R be an algebra over a commutative ring S. Recall that the Dorroh extension of R by S is the ring $D = R \times S$ with operations $(r_1, s_1) + (r_2, s_2) = (r_1 + r_2, s_1 + s_2)$ and $(r_1, s_1)(r_2, s_2) = (r_1r_2 + s_1r_2 + s_2r_1, s_1s_2)$, where $r_i \in R$.
and \(s_i \in S \). For an endomorphism \(\alpha \) of \(R \) and the Dorroh extension \(D \) of \(R \) by \(S, \alpha : D \to D \) defined by \(\bar{\alpha}(r,s) = (\alpha(r), s) \) is an \(S \)-algebra homomorphism.

In the following, we give some other example of right \(\alpha \)-symmetric rings.

Proposition 3.10. (1) If \(e \) is a central idempotent of a ring \(R \) with \(\alpha(e) = e \) and \(\alpha(1-e) = 1-e \), then \(eR \) and \((1-e)R \) are right \(\alpha \)-symmetric if and only if \(R \) is right \(\alpha \)-symmetric.

(2) If \(R \) is a right \(\alpha \)-symmetric ring with \(\alpha(1) = 1 \) and \(S \) is a domain, then the Dorroh extension \(D \) of \(R \) by \(S \) is \(\bar{\alpha} \)-symmetric.

Proof. (1) It is enough to show the necessity. Suppose that \(eR \) and \((1-e)R \) are right \(\alpha \)-symmetric. Let \(abc = 0 \) for \(a, b, c \in R \). Then \(0 = cab = a(eb)c \) and \(0 = (1-e)abc = a((1-e)b)c \). By hypothesis, we get \(0 = aco(\alpha(b)) = \alpha(aco(b)) = \alpha(1-e)b = \alpha(1-e)\alpha(b) = (1-e)\alpha(b) \). Thus \(\alpha(b) = (1-e)\alpha(b) = 0 \), and therefore \(R \) is right \(\alpha \)-symmetric.

(2) Let \((r_1, s_1), (r_2, s_2), (r_3, s_3) \in D \) with \((r_1, s_1)(r_2, s_2)(r_3, s_3) = 0 \). Then \(r_1r_2r_3 + s_1r_2r_3 + s_2r_1r_3 + s_3r_1r_2 + s_1s_2r_3 + s_1s_3r_2 + s_2s_3r_1 = 0 \) and \(s_1s_2s_3 = 0 \).

Since \(S \) is a domain, we get \(s_1 = 0, s_2 = 0 \) or \(s_3 = 0 \). In the following computations, we freely use the assumption that \(R \) is right \(\alpha \)-symmetric with \(\alpha(1) = 1 \). If \(s_1 = 0 \), then \(0 = r_1r_2r_3 + s_2r_1r_3 + s_3r_1r_2 + s_2s_3r_1 \) and so \(0 = r_1(r_3 + s_3)\alpha(r_2 + s_2) + r_1s_3\alpha(r_2) + r_1r_3s_2 + r_1s_3s_2 \). This yields \((r_1, s_1)(r_3, s_3)\bar{\alpha}(r_2, s_2) = 0 \). Similarly, let \(s_2 = 0 \). Then \(r_1s_1\alpha(r_2 + s_3) = 0 \), and so \(r_1s_1(r_3 + s_2)\alpha(r_2) = 0 \), and hence \(r_1s_2\alpha(r_2) + s_1s_2r_2 + s_3r_1\alpha(r_2) + s_3s_2s_2 = 0 \). Thus we have \((r_1, s_1)(r_3, s_3)\bar{\alpha}(r_2, s_2) = 0 \). Finally, let \(s_3 = 0 \). Then \((r_1 + s_1)(r_2 + s_2)r_3 = 0 \), and so \(0 = (r_1 + s_1)(r_3, s_3)\alpha(r_2) + s_2(r_1r_3 + s_1r_3) \). This imply \((r_1, s_1)(r_3, s_3)\bar{\alpha}(r_2, s_2) = 0 \). Therefore the Dorroh extension \(D \) is \(\bar{\alpha} \)-symmetric.

Corollary 3.11. (1) [10, Proposition 3.6(2)] For an abelian ring \(R \), \(R \) is symmetric if and only if \(eR \) and \((1-e)R \) are symmetric for every idempotent \(e \) of \(R \) if and only if \(eR \) and \((1-e)R \) are symmetric for some idempotent \(e \) of \(R \).

(2) [10, Proposition 4.2(1)] Let \(R \) be an algebra over a commutative ring \(S \), and \(D \) be the Dorroh extension of \(R \) by \(S \). If \(R \) is symmetric and \(S \) is a domain, then \(D \) is symmetric.

Note that the condition “\(\alpha(1) = 1 \)” in Proposition 3.10(2) cannot be dropped by the next example.

Example 3.12. Let \(R = \mathbb{Z}_2 \oplus \mathbb{Z}_2 \) and \(\alpha : R \to R \) be defined by \(\alpha((a,b)) = (0,b) \). Consider the Dorroh extension \(D \) of \(R \) by the ring of integers \(\mathbb{Z} \). Then we have \(((1,0),0)((1,0),-1)((1,0),0) = 0 \) in \(D \), but \(((1,0),0)((1,0),0)\bar{\alpha}((1,0),-1) = (0,1,0) \neq 0 \) in \(D \).
Acknowledgments. The authors would like to thank the referee for helpful comments and suggestions.

References

Department of Mathematics
Daejin University
Pocheon 487-711, Korea
E-mail address: tkkwak@daejin.ac.kr