ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS AND ROUGH ISOMETRIES

SEOK WOO KIM AND YONG HAH LEE
ENERGY FINITE p-HARMONIC FUNCTIONS ON GRAPHS
AND ROUGH ISOMETRIES

SEOK WOO KIM AND YONG HAH LEE

Abstract. We prove that if a graph G of bounded degree has finitely many p-hyperbolic ends $(1 < p < \infty)$ in which every bounded energy finite p-harmonic function is asymptotically constant for almost every path, then the set $\mathcal{HBD}_p(G)$ of all bounded energy finite p-harmonic functions on G is in one to one corresponding to \mathbb{R}^l, where l is the number of p-hyperbolic ends of G. Furthermore, we prove that if a graph G' is roughly isometric to G, then $\mathcal{HBD}_p(G')$ is also in an one to one correspondence with \mathbb{R}^l.

1. Introduction

We say that a graph G has the Liouville property if every bounded harmonic function on G is constant. Thus the set of all bounded harmonic functions on G having Liouville property is in one to one correspondence with the real line \mathbb{R}. With this viewpoint, given an operator A on a graph, it seems natural to regard a class \mathcal{S} of solutions of A which is in one to one correspondence with the Euclidean space \mathbb{R}^l for some positive integer l as a generalized version of the Liouville property of the pair (A, \mathcal{S}). In this paper, we study case of the p-Laplacian operator $(1 < p < \infty)$ and the bounded p-harmonic functions on a graph G of bounded degree. If $p = 2$, then we obtain harmonic functions on G as a special case. (See [6] and [8].) In Section 3, we study a sort of an asymptotic behavior of p-harmonic functions which enables us to identify a subset of the set of the bounded p-harmonic functions on G. To be precise, if a graph G has a finite number of p-hyperbolic ends and every bounded energy finite p-harmonic function on G satisfies such an behavior, then we have the following theorem:

Theorem 1.1. Let G be a graph with l ($l \geq 1$) p-hyperbolic ends. Suppose that every p-harmonic function in $\mathcal{HBD}_p(G)$ is asymptotically constant for p-almost every path in each p-hyperbolic end, where $\mathcal{HBD}_p(G)$ denotes the set of all

Received March 5, 2007.

2000 Mathematics Subject Classification. Primary 31C20.

Key words and phrases. p-harmonic function, almost every path, rough isometry.

The first author was supported by grant No. R01-2006-000-10047-0(2007) from the Basic Research Program of the Korea Science & Engineering Foundation.

©2007 The Korean Mathematical Society

277
bounded energy finite p-harmonic functions on G. Then given any real numbers $a_1, a_2, \ldots, a_l \in \mathbb{R}$, there exists a unique p-harmonic function $v \in \mathcal{HBD}_p(G)$ such that

$$v(p) = a_i \text{ for } p\text{-almost every path } p \in P_{E_i}$$

for each $i = 1, 2, \ldots, l$, where E_1, E_2, \ldots, E_l are p-hyperbolic ends of G, and P_{E_i} denotes a family of paths lying in E_i to be explained in Section 3.

In Section 4, we extend our result to graphs being roughly isometric to those satisfying the assumption of Theorem 1.1:

Theorem 1.2. Let G be a graph with $l \ (l \geq 1)$ p-hyperbolic ends. Suppose that every p-harmonic function in $\mathcal{HBD}_p(G)$ is asymptotically constant for p-almost every path in each p-hyperbolic end. Let G' be a graph being roughly isometric to G. Then given any real numbers $a_1, a_2, \ldots, a_l \in \mathbb{R}$, there exists a unique p-harmonic function $v \in \mathcal{HBD}_p(G')$ such that

$$v(p) = a_i \text{ for } p\text{-almost every path } p \in P_{E_i}$$

for each $i = 1, 2, \ldots, l$, where E_1, E_2, \ldots, E_l are p-hyperbolic ends of G'.

2. Preliminaries

Let $G = (V_G, E_G)$ be a graph, where V_G and E_G denote the vertex set and the edge set, respectively, of G. If vertices x and y are the endpoints of the same edge, then we say that x and y are neighbors and write $y \in N_x$ and $x \in N_y$. The degree of x is the number of all neighbors of x and it is denoted by $\sharp N_x$. A graph G is said to be of bounded degree if there exists a number $\nu < \infty$ such that $\sharp N_x \leq \nu$ for all $x \in V_G$. A sequence $x = (x_0, x_1, \ldots, x_r)$ of vertices in V_G is called a path from x_0 to x_r with the length r if x_k is an element of $N_{x_{k-1}}$ for each $k = 1, 2, \ldots, r$. We say that a graph G is connected if any two points of V_G can be joined by a path. Throughout this paper, G is a connected infinite graph with no self-loops and is of bounded degree.

For any vertices x and y, we define $d(x, y)$ to be the length of the shortest path joining x to y. Then d defines a metric on V_G. For this metric d and $r \in \mathbb{N}$, define an r-neighborhood $N_r(x) = \{y \in V_G : d(x, y) \leq r\}$ for each $x \in V_G$. Given any subset $S \subset V_G$, the outer boundary ∂S and the inner boundary δS of S are defined by

$$\partial S = \{x \in V_G : d(x, S) = 1\} \text{ and } \delta S = \{x \in V_G : d(x, V_G \setminus S) = 1\},$$

respectively.

For each real valued function u on $S \cup \partial S$, define the norm of p-gradient, the p-Dirichlet sum, and the p-Laplacian of u at a point $x \in S$, where $1 < p < \infty,$
in such a way that
\[
|Du|(x) = \left(\sum_{y \in N_x} |u(y) - u(x)|^p \right)^{1/p},
\]
\[
I_p(u, S) = \sum_{x \in S} |Du|^p(x),
\]
\[
\Delta_p u(x) = \sum_{y \in N_x} \text{sign}(u(y) - u(x))|u(y) - u(x)|^{p-1}
\]
\[
= \sum_{y \in N_x} |u(y) - u(x)|^{p-2}(u(y) - u(x)),
\]
respectively.

We say that \(u \) is \(p \)-harmonic on \(S \) if \(\Delta_p u(x) = 0 \) for all \(x \in S \). We introduce some useful properties of \(p \)-harmonic functions on graphs in \cite{1}. If a subset \(S \subset V_G \) is finite, then the following conditions are equivalent:

(i) A function \(u \) is \(p \)-harmonic on \(S \).

(ii) A function \(u \) satisfies \(p \)-Laplacian equation in a weak form. That is,
\[
\sum_{x \in S} \sum_{y \in N_x} |u(y) - u(x)|^{p-2}(u(y) - u(x))(w(y) - w(x)) = 0
\]
for any real valued function \(w \) on \(S \cup \partial S \) such that \(w = 0 \) on \(\partial S \).

(iii) A function \(u \) is a minimizer of \(p \)-Dirichlet sum \(I_p(\cdot, S) \) among functions on \(S \cup \partial S \) with the same values on \(\partial S \). That is,
\[
\sum_{x \in S} |Du|^p(x) \leq \sum_{x \in S} |Dv|^p(x)
\]
for every function \(v \) on \(S \cup \partial S \) such that \(v = u \) on \(\partial S \).

Let us set \(T(u, v; x, y) = |u(y) - u(x)|^{p-2}(u(y) - u(x))(w(y) - w(x)) \) whenever functions \(u \) and \(w \) are defined at \(x \) and \(y \). Then it is easy to check that
\[
T(v, v - u; x, y) \geq T(u, v - u; x, y)
\]
if \(u \) and \(v \) are defined at \(x \) and \(y \). The equality occurs only if \(v(x) - u(x) = v(y) - u(y) \). By (2), the following comparison principle holds on \(S \): Suppose there exist \(p \)-harmonic functions \(u \) and \(v \) on a finite set \(S \subset V_G \) such that \(u \geq v \) on \(\partial S \). Then \(u \geq v \) on \(S \).

Let \(S \) be a finite subset of \(V_G \). Suppose that \(\{u_i\} \) is a sequence of functions on \(S \cup \partial S \) converging to a function \(u \) pointwisely. Then for each point \(x \in S \),
\[
|Du_i|^p(x) \to |Du|^p(x) \quad \text{and} \quad \Delta_p u_i(x) \to \Delta_p u(x)
\]
and
\[
I_p(u_i, S) \to I_p(u, S)
\]
as \(i \to \infty \). By these facts together with the comparison principle, the following existence and uniqueness result holds: Let \(S \) be a finite subset of \(V_G \). For any
function \(v \) on \(\partial S \), there exists a unique function on \(S \cup \partial S \) which is \(p \)-harmonic on \(S \) and equal to \(v \) on \(\partial S \).

Let \(\{S_i\} \) be an increasing sequence of finite connected subsets of \(V_G \) and \(S = \bigcup S_i \). Let \(\{u_i\} \) be a sequence of functions on \(S \cup \partial S \) such that each \(u_i \) is \(p \)-harmonic on \(S_i \) and \(u_i(x) \to u(x) < \infty \) as \(i \to \infty \) for all \(x \in S \cup \partial S \). Then the limit function \(u \) is \(p \)-harmonic on \(S \).

We say that a real valued function \(u \) is energy finite if it has finite \(p \)-Dirichlet sum on the whole set \(V_G \), i.e., \(I_p(u, V_G) < \infty \). Let \(BD_p(G) \) denote the set of all bounded energy finite functions on \(V_G \). Then, \(BD_p(G) \) is a Banach space with the norm
\[
||u||_p = \sup_{V_G} |u| + I_p(u, V_G)^{1/p}.
\]
We denote by \(BD_{p,0}(G) \) the closure of the set of all finitely supported functions on \(V_G \) in \(BD_p(G) \) with respect to the norm \(|| \cdot ||_p \). The subset of all bounded \(p \)-harmonic functions in \(BD_p(G) \) is denoted by \(HBD_p(G) \).

The subgraph \(\Gamma \) induced by a set \(S \subset V_G \) is the graph \(\Gamma = (S, E_\Gamma) \), where \(E_\Gamma \) is the set of all edges in \(E_G \) with both ends points in \(S \). In particular, that a subset \(S \subset V_G \) is connected means that the subgraph \(\Gamma = (S, E_\Gamma) \) induced by \(S \) is connected. A connected subset \(S \subset V_G \) with \(\partial S \neq \emptyset \) is called \(D_p \)-massive if there exists a nonnegative \(p \)-harmonic function \(u \) on \(S \) such that \(u = 0 \) on \(\partial S \), \(\sup_S u = 1 \) and \(I_p(u, S) < \infty \). We say that a connected infinite set \(S \subset V_G \) is \(p \)-hyperbolic if there exists a nonempty finite set \(A \subset S \) such that
\[
\text{Cap}_p(A, \infty, S) = \inf_u I_p(u, S) > 0,
\]
where the infimum is taken over all finitely supported function \(u \) on \(S \cup \partial S \) such that \(u = 1 \) on \(A \). Otherwise, \(S \) is called \(p \)-parabolic.

We now introduce the \(p \)-Royden decomposition: (See [9].)

Proposition 2.1. If a graph \(G \) is \(p \)-hyperbolic, then for each function \(u \in BD_p(G) \), there exist unique functions \(h \in HBD_p(G) \) and \(g \in BD_{p,0}(G) \) such that \(u = h + g \).

For each nonnegative real valued function \(w \) on \(E_G \), define
\[
E_p(w) = \sum_{e \in E_G} w^p(e).
\]
Let \(P \) be a family of infinite paths in \(G \). The \(p \)-extremal length \(\lambda_p(P) \) of \(P \) is defined by
\[
\lambda_p(P) = \left(\inf_w E_p(w) \right)^{-1},
\]
where the infimum is taken over the set of all nonnegative functions \(w \) on \(E_G \) such that \(E_p(w) < \infty \) and \(\sum_{e \in E_x} w(e) \geq 1 \) for each path \(x \in P \), where \(E_x \) denotes the edge set of \(x \). The following proposition gives some fundamental properties of the extremal length. (See [4].)

Proposition 2.2. Let \(P_n, n = 1, 2, \ldots, \) be families of paths in a graph \(G \).
(i) If $P_1 \subset P_2$, then $\lambda_p(P_1) \geq \lambda_p(P_2)$.
(ii) $\sum_{n=1}^{\infty} \lambda_p(P_n)^{-1} \geq \lambda_p(\cup_{n=1}^{\infty} P_n)^{-1}$.

On the other hand, the p-extremal length is closely related to the p-capacity: Let $S \subset \mathbb{V}_G$ be a connected infinite subset. For a nonempty finite subset $A \subset S$, let $P_{S,A}$ be the set of all non-self-intersecting infinite paths in S starting from a vertex in A. Then we have

$$\lambda_p(P_{S,A}) = \text{Cap}_p(A, \infty, S)^{-1}. \quad (3)$$

(See [9] and [7].) Furthermore, if $S \subset \mathbb{V}_G$ is p-hyperbolic, then by (3),

$$\lambda_p(P_{S,A}) = \text{Cap}_p(A, \infty, S)^{-1} < \infty. \quad (4)$$

We say that a property holds for p-almost every path in P if the subset of all paths for which the property is not true has p-extremal length ∞.

The following proposition gives some p-almost every path properties of energy finite functions: (See [4] and [9].)

Proposition 2.3. Let P_o be the family of all non-self-intersecting infinite paths from a fixed point $o \in \mathbb{V}_G$.

(i) If $u \in BD_p(G)$, then $u(x)$ exists and is finite for p-almost every path $x \in P_o$, where $u(x) = \lim u(x)$ as $x \to \infty$ along the vertices of x.
(ii) $u \in BD_{p,0}(G)$ if and only if $u(x) = 0$ for p-almost every path $x \in P_o$.

3. Asymptotically constant for p-almost every path on ends

We now define ends of a graph G with its vertex set \mathbb{V}_G: Fix a point $o \in \mathbb{V}_G$. For each $r \in \mathbb{N}$, we denote by $\sharp(r)$ the number of infinite connected components of $\mathbb{V}_G \setminus N_r(o)$. Let $\lim_{r \to \infty} \sharp(r) = l$, where l may be infinity, then we say that the number of ends of G is l. If l is finite, then we can choose $r_0 \in \mathbb{N}$ such that $\sharp(r) = l$ for all $r \geq r_0$.

Using the p-hyperbolicity, we can divide ends of G into two classes as follows: An end E of G is called p-hyperbolic if

$$\text{Cap}_p(\partial E, \infty, E) = \inf_u I_p(u, E) > 0,$$

where the infimum is taken over all finitely supported function u on $E \cup \partial E$ such that $u = 1$ on ∂E. Otherwise, the end is called p-parabolic.

From the definition of a p-hyperbolic end, we have the following lemma:

Lemma 3.1. If E is a p-hyperbolic end, then there exists a p-harmonic function u_E on E, called a p-harmonic measure of E, with the following properties:

(i) $0 \leq u_E \leq 1$ on E;
(ii) $u_E = 0$ on ∂E;
(iii) $\limsup_{x \in E} u_E(x) = 1$;
(iv) u_E has finite p-Dirichlet sum over E.

Suppose the lemma is not true. Then by assumption, there exists a convergent subsequence, and its limit function.

Proof of Theorem 1.1.

Clearly, \(\Omega \) is a nonconstant for \(p \)-almost every path in \(E \).

For each end \(E \) of \(G \), let us denote \(P_E \subset P_G \) to be the family of all paths lying in \(E \setminus N_{r_1}(o) \) starting from a vertex in \(\delta N_{r_1}(o) \) for some large \(r_1 \in \mathbb{N} \). We say that a real valued function \(u \) on \(V_G \) is asymptotically constant for \(p \)-almost every path in \(E \) if there exists a constant \(c \) such that

\[
 u(x) = c \quad \text{for} \quad p \text{-almost every path} \ x \in P_E,
\]

where \(u(x) = \lim u(x) \) as \(x \) goes to \(\infty \) along vertices on \(x \).

Lemma 3.2. Let \(E \) be a \(p \)-hyperbolic end of a graph \(G \) and \(u \) be a nonconstant function in \(HBD_p(G) \) such that \(0 \leq u \leq 1 \). Suppose that \(u \) is asymptotically constant for \(p \)-almost every path in \(E \). If \(\limsup_{x \to \infty} u = 1 \), then \(u(x) = 1 \) for \(p \)-almost every path \(x \in P_E \).

Proof. Suppose the lemma is not true. Then by assumption, there exists a constant \(c \) such that \(u(x) = c \) for \(p \)-almost every path \(x \in P_E \) and \(0 \leq c < 1 \). Since \(u \) is nonconstant, there exists a proper subset \(\Omega \) of \(E \) such that \(\Omega = \{ x \in E : u(x) > 1 - \epsilon \} \), where \(\epsilon \) is a positive constant so small that \(1 - \epsilon > c \). Clearly, \(\Omega \) is a \(D \)-massive subset. By (4), there exists a subfamily \(P_\Omega \) of \(P_E \) such that \(\lambda_p(P_\Omega) < \infty \). But from the definition of \(\Omega \), one can conclude that \(u(x) > c \) for all paths \(x \in P_\Omega \). This contradicts the fact that \(u(x) = c \) for \(p \)-almost every path \(x \in P_E \). This completes the proof.

Proof of Theorem 1.1. For each \(i = 1, 2, \ldots, l \), extend \(u_{E_i} \) to be zero outside \(E_i \) and then construct a sequence of real valued functions \(\{u_{r,i}\} \) on \(V_G \) such that

\[
\begin{cases}
\Delta_p u_{r,i} = 0 & \text{on } N_r(o); \\
u_{r,i} = u_{E_i} & \text{on } V_G \setminus N_r(o),
\end{cases}
\]

where \(u_{E_i} \) is a \(p \)-harmonic measure of \(E_i \) constructed in Lemma 3.1 for each \(i \). By the comparison principle, \(u_{E_i} \leq u_{r,i} \leq 1 \) on \(N_r(o) \) for each \(i \). Thus there exists a convergent subsequence, and its limit function \(u_i \) satisfies that

\[
\begin{cases}
\Delta_p u_i = 0 & \text{on } V_G; \\
0 \leq u_i \leq 1; \\
\limsup_{x \to \infty, x \in E_i} u_i = 1.
\end{cases}
\]

By the minimizing property of \(p \)-harmonic functions, \(u_i \) is energy finite for each \(i \).

Without loss of generality, we may assume that \(0 < a_1 \leq a_2 \leq \cdots \leq a_l \leq 2a_1 \). Let us construct a sequence of real valued functions \(\{v_r\} \) on \(V_G \) such that

\[
\begin{cases}
\Delta_p v_r = 0 & \text{on } N_r(o); \\
v_r = a_i & \text{on } E_i \setminus N_r(o); \\
v_r = 0 & \text{on } V_G \setminus (\bigcup_{k=1}^l E_k \cup N_r(o)),
\end{cases}
\]
where \(i = 1, 2, \ldots, l \). Then
\[
a_i u_i \leq v_r \leq a_i (2 - u_i) \quad \text{on} \quad (\delta N_r(o) \cup \partial N_r(o)) \cap E_i,
\]
where \(u_i \) is the \(p \)-harmonic function constructed above. Hence by the comparison principle, we conclude that
\[
a_i u_i \leq v_r \leq a_i (2 - u_i) \quad \text{on} \quad N_r(o) \cap E_i.
\]
There exists a subsequence, denoted by \(\{ u_{i_n} \} \), converging to a \(p \)-harmonic function \(v \) on \(V_G \). By Lemma 3.2, \(u_i(x) = 1 \) for \(p \)-almost every path \(x \in P_{E_i} \) for each \(i \). Hence \(v \) satisfies (1). By the minimizing property of \(p \)-harmonic function, \(v \) has finite \(p \)-Dirichlet sum.

Suppose that there exists a \(p \)-harmonic function \(w \in \mathcal{HBD}_p(G) \) satisfying (1). Put \(P_{E_i} = P_{i,w,1} \cup P_{i,w,2} \) for each \(i \), where
\[
P_{i,w,1} = \{ x \in P_{E_i} : w(x) = a_i \} \quad \text{and} \quad P_{i,w,2} = \{ x \in P_{E_i} : w(x) \neq a_i \}.
\]
Then we have \(\lambda_p(P_{E_i}) < \infty \) and \(\lambda_p(P_{i,w,2}) = \infty \) for each \(i \). Similarly, let us set \(P_{E_i} = P_{i,v,1} \cup P_{i,v,2} \) for each \(i \), where
\[
P_{i,v,1} = \{ x \in P_{E_i} : v(x) = a_i \} \quad \text{and} \quad P_{i,v,2} = \{ x \in P_{E_i} : v(x) \neq a_i \}.
\]
Then we have \(\lambda_p(P_{i,v,1}) < \infty \) and \(\lambda_p(P_{i,v,2}) = \infty \) for each \(i \). From Proposition 2.2 and Proposition 2.3, we conclude that
\[
\lambda_p(P_{E_i} \setminus (P_{i,w,1} \cap P_{i,v,1})) = \lambda_p((P_{E_i} \setminus P_{i,w,1}) \cup (P_{E_i} \setminus P_{i,v,1})) \geq 1/(\lambda_p(P_{E_i} \setminus P_{i,w,1})^{-1} + \lambda_p(P_{E_i} \setminus P_{i,v,1})^{-1}) = \infty
\]
for each \(i \). This implies that
\[
(v - w)(x) = 0 \quad \text{for} \quad p \text{-almost every} \quad x \in P_{E_i}
\]
for each \(i = 1, 2, \ldots, l \). On the other hand, since \(\lambda_p(P_G \setminus \cup_{i=1}^{l} P_{E_i}) = \infty \), we have
\[
(v - w)(x) = 0 \quad \text{for} \quad p \text{-almost every} \quad x \in P_G.
\]
Consequently, by Proposition 2.3, we conclude that \(v - w \in \mathcal{BD}_{p,0}(G) \). Thus there exists a sequence of finitely supported functions converging to \(v - w \) in \(\mathcal{BD}_p(G) \). By this fact together with the Hölder inequality, since \(v \) and \(w \) are \(p \)-harmonic functions on \(V_G \), it is easy to see that
\[
\sum_{x \in V_G} \sum_{y \in N_x} |v(y) - v(x)|^{p-2}(v(y) - v(x))((v - w)(y) - (v - w)(x)) = 0
\]
and
\[
\sum_{x \in V_G} \sum_{y \in N_x} |w(y) - w(x)|^{p-2}(w(y) - w(x))((v - w)(y) - (v - w)(x)) = 0.
\]
Thus by (2), we conclude that \(v - w \) is constant function on \(N_x \) for all points \(x \in V_G \). Since \(V_G \) is connected, by (5), we conclude that \(v \equiv w \) on \(V_G \). \(\square \)
4. Asymptotically constant for \(p \)-almost every path and rough isometries

We begin with introducing rough isometries between metric spaces. A map \(\varphi : X \to Y \) is called a rough isometry between metric spaces \(X \) and \(Y \) if it satisfies the following condition:

\[
(R) \quad \text{for some constant } \tau > 0, \text{ the } \tau \text{-neighborhood of the image } \varphi(X) \text{ covers } Y; \\
 \text{there exist constants } a \geq 1 \text{ and } b \geq 0 \text{ such that } \\
\quad a^{-1}d(x_1, x_2) - b \leq d(\varphi(x_1), \varphi(x_2)) \leq ad(x_1, x_2) + b \\
\text{for all points } x_1, x_2 \in X, \text{ where } d \text{ denotes the distances of } X \text{ and } Y \induced from their metrics, respectively.}
\]

If such a map exists, then \(X \) is said to be roughly isometric to \(Y \). Being roughly isometric is an equivalent relation. (See [2].) In particular, if \(\varphi : X \to Y \) is a rough isometry satisfying \((R)\), then for any point \(y \in Y \), there exists at least one point \(x \in X \) such that \(d(\varphi(x), y) < \tau \). If we set \(\varphi^{-1}(y) = x \), then \(\varphi^{-1} \) satisfies \((R)\) with constants \(\tau', a' \) and \(b' \), where \(\tau' = a(b + \tau), a' = a \) and \(b' = a(b + 2\tau) \).

On the other hand, since the vertex set of each graph is a metric space, we can define rough isometries between the vertex sets of graphs similarly as above. Let \(G = (V_G, E_G) \) and \(G' = (V_{G'}, E_{G'}) \) be graphs, and \(\varphi : V_{G'} \to V_G \) be a rough isometry. For convenience' sake, we prefer to write the rough isometry \(\varphi : G' \to G \) rather than \(\varphi : V_{G'} \to V_G \).

Slightly modifying the proof of [5, 3], the number of ends of a graph is a rough isometric invariant. In fact, the rough isometry between graphs gives a one to one correspondence between ends of the graphs and, furthermore, it induces the rough isometry between each end and its corresponding end. On the other hand, the \(p \)-parabolicity of ends is preserved under rough isometries between ends. Also, we can prove that the property of asymptotically constant for \(p \)-almost every path is invariant under rough isometries between ends as follows:

Theorem 4.1. Let \(G \) and \(G' \) be graphs with finitely many ends and roughly isometric to each other. Suppose that every \(p \)-harmonic function in \(\mathcal{HBD}_p(G) \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G \). Then every \(p \)-harmonic function in \(\mathcal{HBD}_p(G') \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G' \).

To prove Theorem 4.1, we need the following lemmas:

Lemma 4.2. Let \(G \) and \(G' \) be graphs with finitely many ends, and \(\varphi : G' \to G \) be a rough isometry. Suppose that every \(p \)-harmonic function in \(\mathcal{HBD}_p(G) \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G \). Then for each \(u \in \mathcal{HBD}_p(G') \), \(u \circ \varphi^{-1} \) is asymptotically constant for \(p \)-almost every path in each \(p \)-hyperbolic end of \(G \).
For each $u \in \mathcal{HBD}_p(G')$, it is easy to check that $u \circ \varphi^- \in \mathcal{BD}_p(G)$. So, by Proposition 2.1, there exist unique $h \in \mathcal{HBD}_p(G)$ and $g \in \mathcal{D}_{x,0}(G)$ such that

$$u \circ \varphi^- = h + g.$$

By the assumption, h is asymptotically constant for p-almost every path in each p-hyperbolic end of G. On the other hand, by Proposition 2.3, g is asymptotically constant 0 for p-almost every path in each p-hyperbolic end of G.

Let E_1, E_2, \ldots, E_l be p-hyperbolic ends of G. Then there exist constants c_1, c_2, \ldots, c_l such that

$$h(y) = c_i$$

for each $i = 1, 2, \ldots, l$. Put $P_i = P_{i, h, 1} \cup P_{i, h, 2}$ for each i, where

$$P_{i, h, 1} = \{ y \in P_i : h(y) = c_i \} \quad \text{and} \quad P_{i, h, 2} = \{ y \in P_i : h(y) \neq c_i \}.$$

Then we have $\lambda_p(P_{i, h, 1}) < \infty$ and $\lambda_p(P_{i, h, 2}) = \infty$ for each i. Similarly, let us set $P_i = P_{i, g, 1} \cup P_{i, g, 2}$ for each i, where

$$P_{i, g, 1} = \{ y \in P_i : g(y) = 0 \} \quad \text{and} \quad P_{i, g, 2} = \{ y \in P_i : g(y) \neq 0 \}.$$

Then, by our claim, we have $\lambda_p(P_{i, g, 1}) < \infty$ and $\lambda_p(P_{i, g, 2}) = \infty$ for each i.

Arguing similarly as in the proof of Theorem 1.1, we have

$$\lambda_p(P_i \setminus (P_{i, h, 1} \cap P_{i, g, 1})) = \infty$$

for each i. Hence $u \circ \varphi^-$ is asymptotically constant c_i at infinity of E_i for p-almost every path $y \in P_i$ for each i. This completes the proof. □

Lemma 4.3. Let G and G' be graphs with finitely many ends and $\varphi : G' \to G$ be a rough isometry. Let $u \in \mathcal{HBD}_p(G')$. Suppose that $u \circ \varphi^-$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G. Then u is asymptotically constant for p-almost every path in each p-hyperbolic end of G'.

Proof. Let E be a p-hyperbolic end of G and E' be the corresponding end of G' under φ. Since $u \in \mathcal{HBD}_p(G')$, by Proposition 2.3,

$$u(x) \text{ exists and finite for } p\text{-almost every path } x \in P_a.$$

Put $P_{E'} = P_1 \cup P_2 \cup P_3$, where $P_1 = \{ x \in P_{E'} : u(x) = c \}$, $P_2 = \{ x \in P_{E'} : u(x) \neq c \}$ and $P_3 = \{ x \in P_{E'} : u(x) \text{ does not exists.} \}$. Since $\lambda_p(P_3) = \infty$, we have only to show that $\lambda_p(P_2) = \infty$.

For each path $x \in P_2$, we will assign a suitable path $y \in P_{2, \varphi^-}$, where $P_{2, \varphi^-} = \{ y \in P_G : (u \circ \varphi^-)(y) \neq c \}$. Let us choose any path $x \in P_2$. We may assume that $x = (a, x_1, x_2, \ldots, x_n, \ldots)$. By definition of the inverse rough isometry φ^-, there exists a point $y_n \in E$ such that $d(x_n, \varphi^-(y_n)) < a(b + \tau)$ for each positive integer n. Let us choose a positive constant ρ such that $\lambda_p(P_3) = \infty$. Hence

$$d(y_n, y_{n+1}) \leq \rho.$$

For each positive integer n, we can choose a minimal path $(z_0^n, z_1^n, \ldots, z_{m_n}^n)$ in such a way that $z_0^n = y_n$, $z_{m_n} = y_{n+1}$, and $m_n \leq \rho$. It follows that there exists an infinite path $y = (o', l_1, l_2, \ldots, l_j, \ldots) \in P_E$ and a nondecreasing sequence of
subscripts \(j(n) \to \infty \) as \(n \to \infty \) such that \(t_{j(n)} = y_n \) and \(j(n+1) - j(n) \leq \rho \).

One can choose a minimal path \((s^n_0, v^n_1, \ldots, v^n_p)\) in such a way that \(s^n_0 = x_n, \ s^n_j = \varphi^-(t_{j(n)}) \) and \(l_n \leq a(b + \tau) \). Let us observe that

\[
|u(x_n) - u(\varphi^-(t_{j(n)}))| \leq a(b + \tau) \sum_{i=1}^{l_n} |u(s^n_i) - u(s^n_{i-1})| \leq C \sum_{x' \in N_{a(b + \tau)}(x_n)} |Du|(x').
\]

Since \(u \in \mathcal{BD}_p(E') \), we conclude that

\[
|u(x_n) - u(\varphi^-(t_{j(n)}))|^p \leq C \sum_{x' \in N_{a(b + \tau)}(x_n)} |Du|^p(x') \to 0 \text{ as } n \to \infty.
\]

This implies that \((u \circ \varphi^-)(t_{j(n)}) \to u(y) \neq c \text{ as } n \to \infty\). On the other hand, we have

\[
|u(\varphi^-(t_j)) - u(\varphi^-(t_{j(n)}))| \leq \rho \sum_{i=1}^{m_n} |u(\varphi^-(s^n_i)) - u(\varphi^-(s^n_{i-1}))| \leq C \sum_{x' \in N_{u(x_n)}(x_n)} |Du|(x')
\]

for each subscript \(j \in [j(n), j(n+1)] \). Hence we have

\[
|u(\varphi^-(t_j)) - u(\varphi^-(t_{j(n)}))|^p \leq C \sum_{x' \in N_{u(x_n)}(x_n)} |Du|^p(x') \to 0 \text{ as } n \to \infty.
\]

Thus \((u \circ \varphi^-)(t_j) \to u(x) \neq c \text{ as } j \to \infty\). Hence \(y \) belongs to \(P_{2, \varphi^-} \).

Since \(\lambda_p(P_{2, \varphi^-}) = \infty \), by the equivalent condition for a family of paths to have infinite \(p \)-extremal length \([4] \), there exists a nonnegative function \(w \) on the edge set \(E_\xi \) of \(E \) such that \(\sum_{\tilde{e} \in E_\xi} w^p(\tilde{e}) = \mathcal{E}_\xi(w) < \infty \) and \(\sum_{\tilde{e} \in E_\xi} w(\tilde{e}) = \infty \) for all paths \(y \in P_{2, \varphi^-} \). For each positive integer \(\zeta \) and each edge \(e = [z_1, z_2] \in E_\xi \), let us define a set \(U(\zeta, \xi) = \{ e = [a_1, a_2] \in E_\xi : d(z_1, \varphi^-(a_2)) \leq \zeta \text{ for some } i, j = 1, 2 \} \). Let us define a function \(w^* \) on \(E_\xi \) in the following way: \(w^*(e) = \sup_{\tilde{e} \in U(\zeta, \xi)} w(\tilde{e}) \) for all edges \(e \in E_\xi \). Since \(w^*(e) \leq \sum_{\tilde{e} \in U(\zeta, \xi)} w^*(\tilde{e}) \) for each edge \(e \in E_{\xi} \), we have

\[
\mathcal{E}_\xi(w^*) \leq C \sum_{\tilde{e} \in E_{\xi}} w^p(\tilde{e}) < \infty, \quad \rho \in E_\xi
\]

where \(C \) is a positive constant depending on \(\zeta \). Let us fix a positive integer \(\kappa \) such that \([t_{j-1}, t_j] \in U([x_n, x_{n+1}], \kappa)\) for all \(j(n) \leq j \leq j(n+1) \), where \(y = (y', t_1, t_2, \ldots, t_j, \ldots) \) is a path in \(P_{2, \varphi^-} \) and \(x = (a, x_1, x_2, \ldots, x_n, \ldots) \) is a path in \(P_2 \) which are given above. Then for each path \(x \in P_2 \),

\[
\sum_{e \in E(x)} w^*(e) \geq \frac{1}{\rho} \sum_{\tilde{e} \in E(y)} w(\tilde{e}) = \infty.
\]
Therefore, we have $\lambda_p(P_2) = \infty$. This completes the proof. \hfill \square

We are now ready to prove Theorem 4.1:

Proof of Theorem 4.1. Let u be a p-harmonic function in $\mathcal{HBD}_p(G')$. By Lemma 4.2, the function $u \circ \varphi^{-}$ is asymptotically constant for p-almost every path in each p-hyperbolic end of G. Then, by Lemma 4.3, the function u is asymptotically constant for p-almost every path in each p-hyperbolic end of G'. This completes the proof. \hfill \square

Combining Theorem 1.1 and Theorem 4.1, we get Theorem 1.2.

References

Seok Woo Kim
Department of Mathematics Education
Konkuk University
Seoul 143-701, Korea
E-mail address: swkim@konkuk.ac.kr

Yong Hah Lee
Department of Mathematics Education
Ewha Womans University
Seoul 120-750, Korea
E-mail address: yonghah@ewha.ac.kr