ON \(j \)-INVARIANTS OF WEIERSTRASS EQUATIONS

RYUTARO HARIUCHI
ON j-INVARIANTS OF WEIERSTRASS EQUATIONS

RYUTARO HORIUCHI

Abstract. A simple proof of the fact that the j-invariants for Weierstrass equations are invariant under birational transformations which keep the forms of Weierstrass equations is given by finding a non-trivial explicit birational transformation which sends a normalized Weierstrass equation to the same equation.

1. Introduction

For Legendre forms
\[y^2 = x(x-1)(x-\lambda) \]
the j-invariants ([4], p.55, [2], p.119)
\[j(\lambda) = 256 \cdot \frac{\lambda^2 - \lambda + 1}{\lambda^2 \cdot (\lambda - 1)^2} \]
are invariant under birational transformations which keep Legendre forms. This is proved in Hartshorne’s book ([3], p.317) using Galois theory and linear series theory. The point is in showing that the group of birational transformations which keep Legendre forms is generated by
\[\begin{align*}
\text{(i)} & \quad \begin{cases} x' = 1 - x \\ y' = y \end{cases} \\
\text{(ii)} & \quad \begin{cases} x' = \frac{1}{x} \\ y' = \frac{y}{x^2} \end{cases}
\end{align*} \]
which preserve the set \{0, 1, \infty\}, and map λ respectively to
\[\begin{align*}
\text{(i)} & \quad 1 - \lambda, \\
\text{(ii)} & \quad \frac{1}{\lambda}.
\end{align*} \]

The purpose of this paper is to prove the following theorem.

Received September 17, 2006.
2000 Mathematics Subject Classification. Primary 14H52; Secondary 30F10, 14H55.
Key words and phrases. j-invariant, Weierstrass equation, elliptic curve, coverings, Riemann surface of genus one.
Theorem. For non-singular Weierstrass equations

\[y^2 + a_1xy + a_3y - x^3 - a_2x^2 - a_4x - a_6 = 0, \]

the \(j \)-invariants are defined by

\[j(a_1, a_2, a_3, a_4, a_6) = \frac{4(b_2^2 - 24b_4)^3}{36b_2b_4b_6 - (32b_4^4 + 108b_6^2) - b_2^2(b_2b_6 - b_4^2)}, \]

where

\[\begin{align*}
 b_2 &= a_1^2 + 4a_2 \\
 b_4 &= a_1a_3 + 2a_4 \\
 b_6 &= a_3^2 + 4a_6.
\end{align*} \]

Two elliptic curves defined by equations like (5) are isomorphic if and only if they have the same \(j \)-invariant.

In fact, the invariance of the \(j \)-invariants under birational transformations which keep the form of Weierstrass equations is proved by finding an explicit non-trivial birational transformation which sends a normalized Weierstrass equation to the same equation.

We are working over the field of characteristic not equal to two or three.

Remark. Using Legendre forms it is proved that the \(j \)-invariant is independent of the choice of the base points of elliptic curves ([4], pp.108–109).

2. Weierstrass equations

Let \(T \) be a Riemann surface of genus one. By the Riemann-Roch theorem for a fixed point \(P_\infty \), there are meromorphic functions, \(x \) of order two with a pole of order two at \(P_\infty \) and \(y \) of order three with a pole of order three at \(P_\infty \). Then there is a relation between \(x \) and \(y \):

\[f(x, y) = y^2 + a_1xy + a_3y - x^3 - a_2x^2 - a_4x - a_6 = 0 \]

called the Weierstrass equation ([4], p.46), where the coefficient of \(y^2 \) is normalized as 1 and those of \(x^3 \) is normalized as \(-1\). In general, the Weierstrass equations (8) may be singular, but we assume that the equations are non-singular, i.e., they define elliptic curves, since our surfaces are of genus one. There are many choices of functions \(x, y \) so that the relation is not unique, and there are many birationally equivalent Weierstrass equations.

We choose such a point \(P_0 \neq P_\infty \) on \(T \) as a zero of the discriminant of (8) w.r.t. \(x \). Subtracting the constant values \(x(P_0), y(P_0) \) from the functions \(x, y \) respectively, we may assume that \(a_4 = a_6 = 0 \). The Weierstrass equation then takes the form

\[y^2 + a_1xy + a_3y - x^3 - a_2x^2 = 0 \]

and the coordinates of the point \(P_0 \) is \((x, y) = (0, 0)\). We call the forms (9) normalized Weierstrass equations.
3. Proof of Theorem

It is known ([4], pp.46–55, 63–65) or checked by direct computation that the isomorphisms

\[(10)\]

\[
x = u^2X + r \\
y = u^3Y + su^2X + t
\]

fixing the point \(P_\infty = (\infty, \infty)\) keep the form of Weierstrass equations and make the \(j\)-invariant (6) invariant.

The Weierstrass equation (5) can be transformed to a normalized Weierstrass equation

\[(11)\]

\[
y^2 + a_1xy + a_3y - x^3 - a_2x^2 = 0 \quad (a_3 \neq 0)
\]

by some isomorphisms (10), and it is transformed to completely the same form

\[(12)\]

\[
Y^2 + a_1XY + a_3Y - X^3 - a_2X^2 = 0
\]

by the birational transformation

\[(13)\]

\[
\begin{align*}
X &= \frac{a_3(x + a_2)}{y} \\
Y &= \frac{a_3x(x + a_2)^2}{y^2} - \frac{a_1a_3(x + a_2)}{y} - a_3
\end{align*}
\]

which transforms the point \(P_\infty\) to the finite point \(P_0 = (0, 0)\). The inverse of (13) is

\[(14)\]

\[
\begin{align*}
x &= \frac{a_3(Y + a_1X + a_3)}{X^2} \\
y &= \frac{a_3(a_3Y + a_1a_3X + a_3^2 + a_2X^2)}{X^3}
\end{align*}
\]

One can easily check these facts by using Maple as follows:

\[
> f := y^2 + a[1]*x*y + a[3]*y - x^3 - a[2]*x^2; \\
> X = a[3]*(x + a[2])/y; \quad Y = a[3]*x*(x + a[2])/y^2 - a[1]*a[3]*
\]

\[
(x + a[2])/y - a[3]; \\
> solve({X = a[3]*(x + a[2])/y, \quad Y = a[3]*x*(x + a[2])/y^2 - a[1]*
\]

\[
a[3]*(x + a[2])/y - a[3]}, \{x, y\}); \\
> factor(subs(%, f));
\]

Of course, the original equation (11) and the transformed equation (12) have the same \(j\)-invariant (6).

The transformations (10) and (13) (cf. [1], p.374) generate all birational transformations which keep the form of Weierstrass equations. Consequently we have the result.
References

Faculty of Engineering
Doshisha University
Tatara, Kyotanabe 610-0321, Japan
E-mail address: rhoriuti@mail.doshisha.ac.jp