ON SANDWICH THEOREMS FOR CERTAIN SUBCLASSES
OF ANALYTIC FUNCTIONS INVOLVING
CARLSON–SHAFFER OPERATOR

Tirunelveli Nellaiappan Shanmugam, Sivasubramanian Srikandan,
Baseem Aref Frasin, and Seetharaman Kavitha

Reprinted from the
Journal of the Korean Mathematical Society
Vol. 45, No. 3, May 2008

©2008 The Korean Mathematical Society
ON SANDWICH THEOREMS FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING CARLSON–SHAFFER OPERATOR

Tiruneiveli Nellaiappan Shanmugam, Sivasubramanian Srikandan, Baseem Aref Frasin, and Seetharaman Kavitha

Abstract. The purpose of this present paper is to derive some subordination and superordination results involving Carlson–Shaffer operator for certain normalized analytic functions in the open unit disk. Relevant connections of the results, which are presented in the paper, with various known results are also considered.

1. Introduction

Let H be the class of functions analytic in $\Delta := \{ z : |z| < 1 \}$ and $H[a, n]$ be the subclass of H consisting of functions of the form $f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots$. Let A be the subclass of H consisting of functions of the form $f(z) = z + a_2 z^2 + \cdots$. With a view to recalling the principle of subordination between analytic functions, let the functions f and g be analytic in Δ. Then we say that the function f is subordinate to g if there exists a Schwarz function ω analytic in Δ with $\omega(0) = 0$ and $|\omega(z)| < 1$ ($z \in \Delta$), such that

$$f(z) = g(\omega(z)) \quad (z \in \Delta).$$

We denote this subordination by

$$f \prec g \quad \text{or} \quad f(z) \prec g(z) \quad (z \in \Delta).$$

In particular, if the function g is univalent in Δ, the above subordination is equivalent to

$$f(0) = g(0) \quad \text{and} \quad f(\Delta) \subset g(\Delta).$$

Let $p, h \in H$ and let $\phi(r, s, t; z) : \mathbb{C}^3 \times \Delta \to \mathbb{C}$. If p and $\phi(p(z), zp'(z), z^2 p''(z); z)$ are univalent and if p satisfies the second order superordination

$$h(z) \prec \phi(p(z), zp'(z), z^2 p''(z); z),$$

Received July 2, 2006.
2000 Mathematics Subject Classification. Primary 30C80; Secondary 30C45.
Key words and phrases. differential subordinations, differential superordinations, dominant, subordinant.
then \(p \) is a solution of the differential superordination (1.1). (If \(f \) is subordinate to \(F \), then \(F \) is superordinate to \(f \).) An analytic function \(q \) is called a subordinant if \(q \prec p \) for all \(p \) satisfying (1.1). A univalent subordinant \(\tilde{q} \) that satisfies \(q \prec \tilde{q} \) for all subordinants \(q \) of (1.1) is said to be the best subordinant.

Recently Miller and Mocanu [5] obtained conditions on \(h \), \(q \) and \(\phi \) for which the following implication holds:

\[
h(z) \prec \phi(p(z), zp'(z), z^2p''(z); z) \Rightarrow q(z) \prec p(z).
\]

Using the results of Miller and Mocanu [5], Bulboacă [2] considered certain classes of first order differential superordinations as well as superordination-preserving integral operators. Ali et al. [1] have used the results of Bulboacă [2] and obtained sufficient conditions for certain normalized analytic functions \(f(z) \) to satisfy

\[
q_1(z) \prec \frac{zf'(z)}{f'(z)} \prec q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent functions in \(\Delta \) with \(q_1(0) = 1 \) and \(q_2(0) = 1 \).

Shanmugam et al. [8] obtained sufficient conditions for a normalized analytic functions \(f(z) \) to satisfy

\[
q_1(z) \prec \frac{zf'(z)}{f'(z)} \prec q_2(z)
\]

and

\[
q_1(z) \prec \frac{z^2f'(z)}{\{f(z)\}^2} \prec q_2(z),
\]

where \(q_1 \) and \(q_2 \) are given univalent functions in \(\Delta \) with \(q_1(0) = 1 \) and \(q_2(0) = 1 \).

Obradovic [6] introduced a class of functions \(f \in A \), such that, for \(0 < \alpha < 1 \),

\[
\Re\left\{ f'(z) \left(\frac{z}{f(z)} \right)^\alpha \right\} > 0, \quad z \in \Delta.
\]

He called this class of function as “non-Bazilevič” type. Tuneski and Darus [11] obtained Fekete-Szegő inequality for the non-Bazilevič class of functions. Using this non-Bazilevič class, Wang et al. [12] studied many subordination results for the class \(N(\alpha, \lambda, A, B) \) defined as

\[
N(\alpha, \lambda, A, B) := \left\{ f \in A : (1 + \lambda) \left(\frac{z}{f(z)} \right)^\alpha - \lambda f'(z) \left(\frac{z}{f(z)} \right)^{1+\alpha} < 1 + Az \right\},
\]

where \(\lambda \in \mathbb{C} \), \(-1 \leq B \leq 1, A \neq B \), \(0 < \alpha < 1 \).

Let the function \(\varphi(a; c; z) \) be given by

\[
\varphi(a; c; z) := \sum_{n=0}^{\infty} \frac{(a)_n}{(c)_n} z^{n+1}, \quad (c \neq 0, -1, -2, \ldots; z \in \Delta),
\]

where \((x)_n \) is the Pochhammer symbol defined by

\[
(x)_n := \begin{cases}
1, & n = 0; \\
\frac{x(x+1)(x+2) \ldots (x+n-1)}{n!}, & n \in \mathbb{N} := \{1, 2, 3, \ldots\}.
\end{cases}
\]
Corresponding to the function $\varphi(a, c; z)$, Carlson and Shaffer [3] introduced a linear operator $L(a, c)$, which is defined by the following Hadamard product (or convolution):

$$L(a, c)f(z) := \varphi(a, c; z) * f(z) = \sum_{n=0}^{\infty} \frac{(a)^n}{(c)^n} z^{n+1}.$$

We note that

$$L(a, a)f(z) = f(z), \quad L(2, 1)f(z) = zf(z), \quad L(3, 1)f(z) = zf(z) + \frac{1}{2}z^2f''(z)$$

and $L(\delta + 1, 1)f(z) = D^\delta f(z)$, where $D^\delta f(z)$ is the Ruscheweyh derivative of f (see [7]).

The main object of the present sequel to the aforementioned works is to apply a method based on the differential subordination in order to derive several subordination results involving the Carlson–Shaffer operator. Furthermore, we obtain the previous results of Srivastava and Lashin [9] as special cases of some of the results presented here.

2. Preliminaries

In our present investigation, we shall need the following definition and results.

Definition 2.1 ([5, Definition 2, p. 817]). Denote by Q, the set of all functions f that are analytic and injective on $\Delta - E(f)$, where

$$E(f) = \{\zeta \in \partial \Delta : \lim_{z \to \zeta} f(z) = \infty\}$$

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial \Delta - E(f)$.

Lemma 2.2 ([4, Theorem 3.4h, p. 132]). Let $q(z)$ be univalent in the unit disk Δ and θ and ϕ be analytic in a domain D containing $q(\Delta)$ with $\phi(w) \neq 0$ when $w \in q(\Delta)$. Set $Q(z) = zq'(z)\phi(q(z))$, $h(z) = \theta(q(z)) + Q(z)$. Suppose that

1. $Q(z)$ is starlike univalent in Δ, and
2. $Re\frac{zQ'(z)}{Q(z)} > 0$ for $z \in \Delta$.

If

$$\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)),$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.

Lemma 2.3 ([8]). Let q be a convex univalent function in Δ and $\psi, \gamma \in \mathbb{C}$ with $Re\left\{1 + \frac{2zQ'(z)}{Q(z)} + \frac{\psi}{\gamma}\right\} > 0$. If $p(z)$ is analytic in Δ and

$$\psi p(z) + \gamma zp'(z) \prec \psi q(z) + \gamma zq'(z),$$

then $p(z) \prec q(z)$ and $q(z)$ is the best dominant.
Lemma 2.4 ([5, Theorem 8, p. 822]). Let \(q \) be convex univalent in \(\Delta \) and \(\gamma \in \mathbb{C} \). Further assume that \(\Re[\gamma] > 0 \). If \(p(z) \in H[q(0), 1] \cap Q \), \(p(z) + \gamma zp'(z) \) is univalent in \(\Delta \), then
\[
q(z) + \gamma zq'(z) \prec p(z) + \gamma zp'(z)
\]
implies \(q(z) \prec p(z) \) and \(q \) is the best subordinant.

3. Subordination for analytic functions

By using Lemma 2.3, we first prove the following.

Theorem 3.1. Let \(q \) be univalent in \(\Delta \), \(\lambda \in \mathbb{C} \) and \(0 < \alpha < 1 \). Suppose \(q \) satisfies
\[
\Re \left\{ 1 + \frac{zq''(z)}{q'(z)} + \frac{\lambda}{\alpha} \right\} > 0.
\]
If \(f \in A \) satisfies the subordination:
\[
(1 + \lambda a) \left(\frac{z}{L(a, c) f(z)} \right)^{\alpha} - a \lambda L(a + 1, c) f(z) \left(\frac{z}{L(a, c) f(z)} \right)^{\alpha} \prec q(z) + \frac{\lambda zq'(z)}{\alpha},
\]
then
\[
\left(\frac{z}{L(a, c) f(z)} \right)^{\alpha} \prec q(z)
\]
and \(q \) is the best dominant.

Proof. Define the function \(p \) by
\[
p(z) := \left(\frac{z}{L(a, c) f(z)} \right)^{\alpha}.
\]
Then
\[
\frac{zp'(z)}{p(z)} = a \alpha \left[1 - \frac{L(a + 1, c) f(z)}{L(a, c) f(z)} \right]
\]
which, in light of hypothesis (3.2) of Theorem 3.1, yields the following subordination
\[
p(z) + \frac{\lambda zp'(z)}{\alpha} \prec q(z) + \frac{\lambda zq'(z)}{\alpha}.
\]
The assertion (3.2) of Theorem 3.1 now follows by an application of Lemma 2.3 with \(\gamma = \frac{\lambda}{\alpha} \) and \(\psi = 1 \).

Letting \(a = c = 1 \) in Theorem 3.1, we have the following corollary.

Corollary 3.2. Let \(q \) be univalent in \(\Delta \), \(\lambda \in \mathbb{C} \) and \(0 < \alpha < 1 \). Suppose \(q \) satisfies (3.1). If \(f \in A \), and
\[
\left(\frac{z}{f(z)} \right)^{\alpha} \left(1 + \lambda - \lambda \frac{zf'(z)}{f(z)} \right) \prec q(z) + \frac{\lambda zq'(z)}{\alpha},
\]
then
\[
\left(\frac{z}{f(z)} \right)^{\alpha} \prec q(z)
\]
and \(q \) is the best dominant.

Letting \(a = 2 \) and \(c = 1 \) in Theorem 3.1, we have the following corollary.

Corollary 3.3. Let \(q \) be univalent in \(\Delta \), \(\lambda \in \mathbb{C} \) and \(0 < \alpha < 1 \). Suppose \(q \) satisfies (3.1). If \(f \in \mathbb{A} \) and
\[
\left(\frac{1}{f'(z)} \right)^{\alpha} \left(1 + 2\lambda - \lambda \left(2 - \frac{zf''(z)}{f'(z)} \right) \right) \prec q(z) + \frac{\lambda z q'(z)}{\alpha},
\]
then
\[
\left(\frac{1}{f'(z)} \right)^{\alpha} \prec q(z)
\]
and \(q \) is the best dominant.

Taking \(q(z) = \frac{1 + Az}{1 + Bz} \) in Theorem 3.1, we have the following corollary.

Corollary 3.4. Let \(-1 \leq B < A \leq 1 \) and (3.1) hold. If \(f \in \mathbb{A} \) and
\[
(1 + a\lambda) \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} - a\lambda \frac{L(a + 1, c)f(z)}{L(a, c)f(z)} \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} \prec \frac{\lambda(A - B)z}{\alpha(1 + Bz)^2} + \frac{1 + Az}{1 + Bz},
\]
then
\[
\left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} \prec \frac{1 + Az}{1 + Bz}
\]
and \(\frac{1 + Az}{1 + Bz} \) is the best dominant.

Our Theorem 3.1 for the choice of \(q(z) = \frac{1 + z}{1 - z} \), reduces to

Corollary 3.5. Let (3.1) hold. If \(f \in \mathbb{A} \) and
\[
(1 + a\lambda) \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} - a\lambda \frac{L(a + 1, c)f(z)}{L(a, c)f(z)} \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} \prec \frac{2\lambda z}{\alpha(1 - z)^2} + \frac{1 + z}{1 - z},
\]
then
\[
\left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} \prec \frac{1 + z}{1 - z}
\]
and \(\frac{1 + z}{1 - z} \) is the best dominant.
Theorem 3.6. Let q be univalent in Δ, $\gamma, \mu \neq 0 \in \mathbb{C}$ and $0 \leq \beta \leq 1$. Let $f \in A$. Suppose q satisfies

\[(3.3) \quad \Re \left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0.\]

If

\[1 + \frac{\gamma \mu \left\{(a+1)\beta L(a+2,c)f(z)+a(1-2\beta)L(a+1,c)f(z)-(1-\beta)(a-1)L(a,c)f(z)\right\}}{(1-\beta)L(a,c)f(z)+\beta L(a+1,c)f(z)} - 1 \prec 1 + \frac{\gamma q'(z)}{q(z)},\]

then

\[\left\{(1-\beta)L(a,c)f(z) + \beta L(a+1,c)f(z)\right\}^{-\mu} \prec q(z)\]

and q is the best dominant.

Proof. Define the function p by

\[p(z) := \left\{(1-\beta)L(a,c)f(z) + \beta L(a+1,c)f(z)\right\}^{\mu}z.\]

Then a computation shows that

\[\mu \left\{(a+1)\beta L(a+2,c)f(z)+a(1-2\beta)L(a+1,c)f(z)-(1-\beta)(a-1)L(a,c)f(z)\right\} = zp'(z) - \frac{zq'(z)}{q(z)}.\]

By setting

\[\theta(\omega) := 1 \quad \text{and} \quad \phi(\omega) := \frac{\gamma}{\omega},\]

it can be easily observed that θ is analytic in \mathbb{C}, ϕ is analytic in $\mathbb{C} \setminus \{0\}$ and that

\[\phi(\omega) \neq 0 \quad (\omega \in \mathbb{C} \setminus \{0\}).\]

Also, we let

\[Q(z) = zq'(z)\phi(q(z)) = \gamma \frac{zq'(z)}{q(z)}\]

and

\[h(z) = \theta(q(z)) + Q(z) = 1 + \gamma \frac{zq'(z)}{q(z)}.\]

From (3.3), we find that $Q(z)$ is starlike univalent in Δ and that

\[\Re \left\{\frac{zq'(z)}{q(z)}\right\} = \Re \left\{1 + \frac{zq''(z)}{q'(z)} - \frac{zq'(z)}{q(z)}\right\} > 0,\]

by the hypothesis (3.3) of Theorem 3.6. Thus, by applying Lemma 2.2, our proof of Theorem 3.6 is completed. \hfill \Box

For a special case when $a = 1$, $c = 1$, $\beta = 0$, $q(z) = \frac{1}{(1-z)^b}$ ($b \in \mathbb{C} \setminus \{0\}$), $\gamma = \frac{1}{b}$ and $\mu = 1$, Theorem 3.6 reduces at once to the following known result obtained by Srivastava and Lashin [9].
Corollary 3.7. Let b be a non zero complex number. If $f \in A$ and
\[
1 + \frac{1}{b} \left[z f'(z) - 1 \right] < \frac{1 + z}{1 - z},
\]
then
\[
\frac{f(z)}{z} < \frac{1}{(1 - z)^{2b}}
\]
and $\frac{1}{(1 - z)^{2b}}$ is the best dominant.

For a special case when $a = c = 1$, $\beta = 1$, $q(z) = \frac{1}{(1 - z)^{2b}}$ ($b \in \mathbb{C} \setminus \{0\}$), $\gamma = \frac{1}{b}$ and $\mu = 1$. Theorem 3.6 reduces at once to the following known result obtained by Srivastava and Lashin [9].

Corollary 3.8. Let b be a non zero complex number. If $f \in A$ and
\[
1 + \frac{1}{b} \left[z f''(z) \right] \approx \frac{1 + z}{1 - z},
\]
then
\[
f'(z) < \frac{1}{(1 - z)^{2b}}
\]
and $\frac{1}{(1 - z)^{2b}}$ is the best dominant.

4. Superordination for analytic functions

Next, applying Lemma 2.4, we obtain the following two theorems.

Theorem 4.1. Let q be convex univalent in Δ, $\lambda \in \mathbb{C}$ and $0 < \alpha < 1$. Suppose $f \in A$ satisfies
\[
(4.1) \quad \Re \{\lambda\} > 0
\]
and \(\left(\frac{z}{L(a,c)f(z)}\right)^{\alpha} \in \mathcal{H}[q(0),1] \cap Q\). Let
\[
(1 + a\lambda) \left(\frac{z}{L(a,c)f(z)}\right)^{\alpha} - a\lambda \frac{L(a + 1,c)f(z)}{L(a,c)f(z)} \left(\frac{z}{L(a,c)f(z)}\right)^{\alpha}
\]
be univalent in Δ. If $f \in A$ satisfies the superordination:
\[
(4.2) \quad q(z) + \frac{\alpha q'(z)}{\alpha} < (1 + a\lambda) \left(\frac{z}{L(a,c)f(z)}\right)^{\alpha} - a\lambda \frac{L(a + 1,c)f(z)}{L(a,c)f(z)} \left(\frac{z}{L(a,c)f(z)}\right)^{\alpha},
\]
then
\[
q(z) < \left(\frac{z}{L(a,c)f(z)}\right)^{\alpha}
\]
and q is the best subordinant.
Proof. Define the function p by

$$p(z) := \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha}.$$

Then a computation shows that

$$p(z) + \frac{\lambda}{\alpha}zp'(z) = (1 + a\lambda) \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} - a\lambda \frac{L(a + 1, c)f(z)}{L(a, c)f(z)} \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha}.$$

Theorem 4.1 follows as an application of Lemma 2.4. □

Taking $q(z) = \frac{1 + Az}{1 + Bz}$ in Theorem 4.1, we get the following corollary.

Corollary 4.2. Let $-1 \leq B < A \leq 1$. Let q be convex univalent in Δ. Suppose $f \in A$ satisfies $\Re \{ \lambda \} > 0$ and $\left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} \in H[q(0), 1] \cap Q$. Let

$$(1 + a\lambda) \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha} - a\lambda \frac{L(a + 1, c)f(z)}{L(a, c)f(z)} \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha},$$

be univalent in Δ. If

$$\frac{\lambda(A - B)}{\alpha(1 + Bz)^{2}} = \frac{1 + Az}{1 + Bz},$$

then

$$\frac{1 + Az}{1 + Bz} \prec \left(\frac{z}{L(a, c)f(z)} \right)^{\alpha}$$

and $\frac{1 + Az}{1 + Bz}$ is the best subordinant.

Theorem 4.3. Let q be convex univalent in Δ, $\gamma \in \mathbb{C}$, $0 \leq \beta \leq 1$ and $f \in A$. Suppose $0 \neq \left[\frac{(1 - \beta)L(a, c)f(z) + \beta L(a + 1, c)f(z)}{z} \right]^{\mu} \in H[q(0), 1] \cap Q$, and let

$$\Psi(a, c, \beta, z) := 1 + \gamma \mu \left\{ \frac{(a + 1)\beta L(a + 2, c)f(z) + \beta(1 - 2\beta)L(a + 1, c)f(z) - (1 - \beta)(a - 1)L(a, c)f(z)}{(1 - \beta)L(a, c)f(z) + \beta L(a + 1, c)f(z)} - 1 \right\}.$$

If $\Psi(a, c, \beta, z)$ is univalent in Δ and

$$1 + \gamma \frac{zq'(z)}{q(z)} \prec \Psi(a, c, \beta, z),$$

then

$$q(z) \prec \left[\frac{(1 - \beta)L(a, c)f(z) + \beta L(a + 1, c)f(z)}{z} \right]^{\mu}$$

and q is the best subordinant.
5. Sandwich results

Combining the results of differential subordination and superordination, we state the following “sandwich results”:

Theorem 5.1. Let q_1 and q_2 be convex univalent in Δ, $\lambda \in \mathbb{C}$, and $0 < \alpha < 1$. Suppose q satisfies (3.1) and (4.1). If

$$(1 + a\lambda) \left(\frac{z}{L(a,c)f(z)} \right)^\alpha - a\lambda \frac{L(a+1,c)f(z)}{L(a,c)f(z)} \left(\frac{z}{L(a,c)f(z)} \right)^\alpha$$

is univalent in Δ.

And if $f \in A$ satisfies

$$q_1(z) + \frac{\lambda q_1'(z)}{\alpha} < (1 + a\lambda) \left(\frac{z}{L(a,c)f(z)} \right)^\alpha - a\lambda \frac{L(a+1,c)f(z)}{L(a,c)f(z)} \left(\frac{z}{L(a,c)f(z)} \right)^\alpha < q_2(z) + \frac{\lambda q_2'(z)}{\alpha},$$

then

$$q_1(z) < \left(\frac{z}{L(a,c)f(z)} \right)^\alpha < q_2(z)$$

and q_1 and q_2 are respectively the best subordinant and best dominant.

Theorem 5.2. Let q_1 and q_2 be convex univalent in Δ, $\gamma \neq 0 \in \mathbb{C}$, $\mu \neq 0 \in \mathbb{C}$ and $0 \leq \beta \leq 1$. Let $f \in A$ and (3.3) hold. Suppose

$$0 \neq \left[\frac{(1 - \beta)L(a,c)f(z) + \beta L(a+1,c)f(z)}{z} \right] \mu \in \mathcal{H}(q_0, 1) \cap \mathcal{Q}$$

and

$$\Psi(a,c,\beta,z) := 1 + \gamma \mu \left\{ \frac{(a+1)\beta L(a+2,c)f(z) + (1-2\beta)L(a+1,c)f(z) - (1-\beta)(a-1)L(a,c)f(z)}{(1-\beta)L(a,c)f(z) + \beta L(a+1,c)f(z)} - 1 \right\}.$$

If

$$\Psi(a,c,\beta,z)$$

is univalent in Δ and

$$1 + \gamma \frac{zq_1'(z)}{q_1(z)} < \Psi(a,c,\beta,z) < 1 + \gamma \frac{zq_2'(z)}{q_2(z)},$$

then

$$q_1(z) < \left[\frac{(1 - \beta)L(a,c)f(z) + \beta L(a+1,c)f(z)}{z} \right] \mu < q_2(z)$$

and q_1 and q_2 are respectively the best subordinant and best dominant respectively.

References

Tirunelveli Nellaiappan Shanmugam
Department of Mathematics
College of Engineering, Anna University
Chennai 600 025, India
E-mail address: shan@annauniv.edu

Sivasubramanian Srijandan
Department of Mathematics
Easwari Engineering college
Ramapuram, Chennai 600089, India
E-mail address: sivasaisastha@rediffmail.com

Basem Aref Frasin
Department of Mathematics
Al al-Bayt University
Po Box Number 130095
Mafraq, Jordan
E-mail address: bafrasin@yahoo.com

Seetharaman Kavitha
Department of Mathematics
Madras Christian College
Chennai-59, Tamilnadu, India
E-mail address: kavithass19@rediffmail.com