WEAK AND STRONG CONVERGENCE OF THE ISHIKAWA ITERATION PROCESS WITH ERRORS FOR TWO ASYMPTOTICALLY NONEXPANSIVE MAPPINGS

JAE UG JEONG

Abstract. In this paper, we prove the weak and strong convergence of the Ishikawa iterative scheme with errors to a common fixed point for two asymptotically nonexpansive mappings in a uniformly convex Banach space under a condition weaker than compactness. Our theorems improve and generalize recent known results in literature.

1. Introduction

Let K be a nonempty subset of a real normed linear space E. Let T be a self-mappings of K. T is said to be asymptotically nonexpansive with constant μ_n if there exists $\mu_n \in [0, +\infty)$, $\lim_{n \to \infty} \mu_n = 0$, such that

$$\|T^n(x) - T^n(y)\| \leq (1 + \mu_n)\|x - y\|, \quad \forall x, y \in K.$$

T is called nonexpansive if $\|T(x) - T(y)\| \leq \|x - y\|, \quad \forall x, y \in K$.

From the above definitions, it follows that a nonexpansive mapping must be asymptotically nonexpansive, but the converse does not hold.

It was proved in [1] that if E is uniformly convex and if K is bounded, closed, and convex, then every asymptotically nonexpansive mapping has a fixed point.

Takahashi and Tamuro([6]) introduced the following iterative schemes known as Ishikawa iterative schemes for a pair of nonexpansive mappings;

$$\begin{cases}
 x_1 = x \in K, \\
 x_{n+1} = a_nSy_n + (1 - a_n)x_n, \\
 y_n = b_nTx_n + (1 - b_n)x_n, \quad n \geq 1,
\end{cases}$$

(1.1)

where $a_n, b_n \in [0, 1]$.

Khan and Hafiz([3]) generalized the scheme (1.1) to the one with errors for a pair of nonexpansive mappings as follows;

\begin{itemize}
 \item \textit{2000 Mathematics Subject Classification.} 47H09, 47H10.
 \item \textit{Key words and phrases.} Uniformly convex Banach space; Opial’s condition; asymptotically nonexpansive mapping; common fixed point; weak and strong convergence.
\end{itemize}
\begin{equation}
\begin{cases}
 x_1 = x \in K, \\
 x_{n+1} = a_nSx_n + b_nx_n + c_nu_n, \\
 y_n = a'_nTx_n + b'_n + c'_nv_n, \quad n \geq 1,
\end{cases}
\end{equation}

where \(\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}\) are sequences in \([0, 1]\) with \(0 < \delta \leq a_n, a_n \leq 1 - \delta < 1, a_n + b_n + c_n = 1 = a_n + b'_n + c_n\) and \(\{u_n\}, \{v_n\}\) are bounded sequences in \(K\).

We further generalize this scheme (1.2) for a pair of asymptotically nonexpansive mappings as follows:

\begin{equation}
\begin{cases}
 x_1 = x \in K, \\
 x_{n+1} = a_nS\bar{x}_n + b_nx_n + c_nu_n, \\
 y_n = a'_nT\bar{x}_n + b'_n + c'_nv_n, \quad n \geq 1,
\end{cases}
\end{equation}

where \(\{a_n\}, \{b_n\}, \{c_n\}, \{a'_n\}, \{b'_n\}, \{c'_n\}\) are sequences in \([0, 1]\) with \(0 < \delta \leq a_n, a_n \leq 1 - \delta < 1, a_n + b_n + c_n = 1 = a_n + b'_n + c_n\) and \(\{u_n\}, \{v_n\}\) are bounded sequences in \(K\).

In this paper, we study the Ishikawa iterative scheme with error numbers (1.3) for the weak and strong convergence for a pair of asymptotically nonexpansive mappings in a uniformly convex Banach space. Our theorems improve and generalize some previous results.

2. Preliminaries

Let \(E\) be a Banach space and let \(K\) be a nonempty subset of \(E\). Let \(T\) be a mapping of \(K\) into itself. For every \(\varepsilon\) with \(0 \leq \varepsilon \leq 2\), we define the modulus \(\delta(\varepsilon)\) of convexity of \(E\) by

\[\delta(\varepsilon) = \inf \{1 - \frac{\|x + y\|}{2} : \|x\| \leq 1, \|y\| \leq 1, \|x - y\| \geq \varepsilon\} \]

A Banach space \(E\) is said to be uniformly convex if \(\delta(\varepsilon) > 0\). A uniformly convex Banach space is reflexive and strictly convex.

A Banach space \(E\) is said to satisfy Opial’s condition([4]) if \(x_n \rightharpoonup x\) and \(x \neq y\) imply

\[\lim \inf_{n \to \infty} \|x_n - x\| < \lim \inf_{n \to \infty} \|x_n - y\|.
\]

We first prove the following lemma.

Lemma 2.1. Let \(\{\alpha_n\}, \{\beta_n\}, \{\gamma_n\}\), and \(\{\mu_n\}\) be four nonnegative sequences satisfying

\[a_{n+1} \leq (1 + \gamma_n)(1 + \mu_n)a_n + \beta_n\]

for all \(n \geq 1\). If \(\sum_{n=1}^{\infty} \mu_n < \infty\), \(\sum_{n=1}^{\infty} \gamma_n < \infty\), and \(\sum_{n=1}^{\infty} \beta_n < \infty\), then \(\lim_{n \to \infty} a_n\) exists.

Proof. By hypothesis, we obtain
\[a_{n+m} \leq (1 + \gamma_{n+m-1})(1 + \mu_{n+m-1})a_{n+m-1} + \beta_{n+m-1} \]

\[\leq e^{\gamma_{n+m-1} + \mu_{n+m-1}}a_{n+m-1} + \beta_{n+m-1} \]

\[= e^{\gamma_{n+m-1} + \mu_{n+m-1}}[(1 + \gamma_{n+m-2})(1 + \mu_{n+m-2})a_{n+m-2} + \beta_{n+m-2}] + \beta_{n+m-1} \]

\[\leq e(\gamma_{n+m-1} + \gamma_{n+m-2}) + (\mu_{n+m-1} + \mu_{n+m-2})a_{n+m-2} \]

\[+ e^{\gamma_{n+m-1} + \mu_{n+m-1}}\beta_{n+m-2} + \beta_{n+m-1} \]

\[\ldots \]

\[\leq e^{\sum_{k=n}^{n+m-1}(\gamma_k + \mu_k)}a_n + e^{\sum_{k=n}^{n+m-1}(\gamma_k + \mu_k)}\sum_{k=1}^{n+m-1} \beta_k. \]

Thus, from \(\sum_{k=1}^{n} \gamma_k < +\infty, \sum_{k=1}^{n} \mu_k < +\infty, \sum_{k=1}^{n} \beta_k < +\infty, \) we can obtain \(\limsup_{n \to \infty} a_n \leq \liminf_{n \to \infty} a_n. \) So, \(\lim_{n \to \infty} a_n \) exists.

Lemma 2.2 (see [2]). Let \(E \) be a uniformly convex Banach space satisfying Opial’s condition, \(\phi \neq K \subset E \) closed and convex, and \(T : K \to K \) asymptotically nonexpansive. Then \(I - T \) is demiclosed with respect to zero.

We also know the following lemma proved by Schu ([5]).

Lemma 2.3. Let \(E \) be a uniformly convex Banach space and \(\{\alpha_n\} \) a sequence in \([\varepsilon, 1 - \varepsilon] \) for some \(\varepsilon \in (0, 1). \) Suppose \(\{x_n\} \) and \(\{y_n\} \) are sequences in \(E \) such that \(\limsup_{n \to \infty} \|x_n\| \leq r, \limsup_{n \to \infty} \|y_n\| \leq r, \) and \(\limsup_{n \to \infty} \|\alpha_n x_n + (1 - \alpha_n) y_n\| = r \) holds for some \(r \geq 0. \) Then \(\lim_{n \to \infty} \|x_n - y_n\| = 0. \)

3. Main Results

In this section, we prove our main theorems. Let \(K \) be a nonempty bounded closed uniformly convex Banach space \(E. \) Let \(S, T : K \to K \) be asymptotically nonexpansive mappings. Let \(F(S) \) denote the set of all fixed points of \(S. \) The following iteration scheme is studied:

\[
\begin{align*}
 x_1 & = x \in K, \\
 x_{n+1} & = a_n S^n y_n + b_n x_n + c_n u_n, \\
 y_n & = \bar{a}_n T^n x_n + \bar{b}_n x_n + \bar{c}_n v_n, \quad n \geq 1,
\end{align*}
\]

(3.1)

where \(\{a_n\}, \{b_n\}, \{c_n\}, \{\bar{a}_n\}, \{\bar{b}_n\}, \{\bar{c}_n\} \) are sequences in \([0, 1]\) with \(0 < \delta \leq a_n, \bar{a}_n \leq 1 - \delta < 1, a_n + b_n + c_n = 1 = \bar{a}_n + \bar{b}_n + \bar{c}_n, \) and \(\{u_n\}, \{v_n\} \) are bounded sequences in \(K. \)

Theorem 3.1. Let \(E \) be a uniformly convex Banach space satisfying the Opial’s condition and \(K, S, T \) and \(\{x_n\} \) be as taken in Lemma 3.3. If \(F(S) \cap F(T) \neq \phi, \) then \(\{x_n\} \) converges weakly to a common fixed point of \(S \) and \(T. \)

Theorem 3.2. Let \(E \) be a uniformly convex Banach space and \(K, \{x_n\} \) be as taken in Lemma 3.3. Let \(S, T : K \to K \) be two asymptotically nonexpansive
mappings satisfying condition (A). If \(F(S) \cap F(T) \neq \emptyset \), then \(\{x_n\} \) converges strongly to a common fixed point of \(S \) and \(T \).

References

Department of Mathematics, Dongeui University, Pusan 614-714, Korea
E-mail address: jujeong@deu.ac.kr (J. U. Jeong)