TOPOLOGICAL ENTROPY OF A SEQUENCE OF MONOTONE MAPS ON CIRCLES

YUJUN ZHU, JINLIAN ZHANG, AND LIANFA HE

Abstract. In this paper, we prove that the topological entropy of a sequence of equi-continuous monotone maps $f_1, \ldots, f\infty = \{f_i\}_{i=1}^{\infty}$ on circles is $h(f_1, \infty) = \limsup_{n\to\infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|$. As applications, we give the estimation of the entropies for some skew products on annular and torus. We also show that a diffeomorphism f on a smooth 2-dimensional closed manifold and its extension on the unit tangent bundle have the same entropy.

1. Introduction

The concept of topological entropy was originally introduced by Adler, Konheim, and Mcandrew [1] as an invariant of topological conjugacy and a numerical measure for the complexity of a dynamical system. Later, Bowen [2] and Dinaburg [3] gave an equivalent definition when the space under consideration is metrizable. We can see [12] for the definition and main properties of it. With the development of the study of nonautonomous dynamical systems, recently, Kolyada and Snoha [7] introduced and studied the notion of topological entropy for a sequence of endomorphisms of a compact topological space. For other recent results about entropy one can see [4], [9], [11], etc.

The systems on circle play an important role in the study of one-dimensional dynamical systems. In [5] and [12] the authors studied the entropies of homeomorphism and monotone continuous map on circle respectively. Our purpose is to study the topological entropy of a sequence...
of monotone maps on circles. In section 2, by estimating the cardinal of the spanning set and the separated set, we prove that the topological entropy of a sequence of equi-continuous monotone maps \(f_{1,\infty} = \{ f_i \}_{i=1}^{\infty} \) is \(h(f_{1,\infty}) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} | \deg f_i |. \) In section 3, as applications, we give the estimation of the entropies for some skew products on annular and torus. We also show that a \(C^1 \) diffeomorphism \(f \) on a smooth 2-dimensional closed manifold \(M \) and its extension \(D^2 f \) on the unit tangent bundle \(SM \) have the same entropy, i.e., \(h(f) = h(D^2 f) \).

Let \((X,d)\) be a compact metric space and \(\{ f_i \}_{i=1}^{\infty} \) a sequence of continuous maps on \(X \). The identity map on \(X \) will be denoted by \(Id \). Let \(N \) be the set of all positive integers. For any \(i \in N \), let \(f_i^0 = Id \) and for any \(i, n \in N \), let

\[
f_i^n = f_{i+(n-1)} \circ \cdots \circ f_{i+1} \circ f_i, \quad f_i^{-n} = (f_i^n)^{-1} = f_i^{-1} \circ f_{i+1}^{-1} \circ \cdots \circ f_{i+(n-1)}^{-1}.
\]

(\(f^{-1} \) will be applied to sets, we don’t assume that the maps \(f_i \) are invertible). Denote by \(f_{1,\infty} \) the sequence \(\{ f_i \}_{i=1}^{\infty} \) and the dynamical system \((X, \{ f_i \}_{i=1}^{\infty})\). Finally, denote by \(f_{1,\infty}^{[n]} \) the sequence of maps \(\{ f_i^{[n]} = f_{(i-1)n+1} \}_{i=1}^{\infty} \).

Let \(\{ f_i \}_{i=1}^{\infty} \) be a sequence of continuous maps of compact metric space \((X,d)\). For any \(n \in N \), define a new metric \(d_n \) on \(X \) by

\[
d_n(x, y) := \max_{0 \leq s \leq n-1} d(f_1^s(x), f_1^s(y)).
\]

For any \(\varepsilon > 0 \), a subset \(E \subset X \) is said to be an \((n, f_{1,\infty}, \varepsilon)\) spanning set of \(X \), if for any \(x \in X \), there exists \(y \in E \) such that \(d_n(x, y) \leq \varepsilon \). Let \(r(n, f_{1,\infty}, \varepsilon) \) denote the smallest cardinality of any \((n, f_{1,\infty}, \varepsilon)\)-spanning set of \(X \). A subset \(F \subset X \) is said to be an \((n, f_{1,\infty}, \varepsilon)\)-separated set of \(X \), if \(x, y \in F, x \neq y \), implies \(d_n(x, y) > \varepsilon \). Let \(s(n, f_{1,\infty}, \varepsilon) \) denote the largest cardinality of any \((n, f_{1,\infty}, \varepsilon)\)-separated set of \(X \). It’s easy to prove that (similar to the proof for the autonomous system in [12])

\[
r(n, f_{1,\infty}, \varepsilon) \leq s(n, f_{1,\infty}, \varepsilon) \leq r(n, f_{1,\infty}, \varepsilon/2).
\]

Definition 1.1. Let \(f_{1,\infty} = \{ f_i \}_{i=1}^{\infty} \) be a sequence of continuous maps of compact metric space \((X,d)\), then the topological entropy of \(f_{1,\infty} \) is defined by

\[
h(f_{1,\infty}) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log r(n, f_{1,\infty}, \varepsilon) = \lim_{\varepsilon \to 0} \limsup_{n \to \infty} \frac{1}{n} \log s(n, f_{1,\infty}, \varepsilon).
\]
Furthermore, we can see the equivalent definition using open covers in [7].

Let S^1 be a circle with the “geodesic” metric, in which S^1 has length 1 and the distance between two points is the length of the shortest path joining them. Let $f : S^1 \to S^1$ be a continuous surjective map and $F : \mathbb{R}^1 \to \mathbb{R}^1$ a lift of f, we say f is monotone if F is monotone. Denote by $\deg f$ the degree of f (see [13]).

2. The main result

The main result of this paper is:

Theorem 2.1. Let $f_1, \infty = \{f_i\}_{i=1}^{\infty}$ be a sequence of equi-continuous monotone maps of S^1. Then

$$h(f_1, \infty) = \lim_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|.$$

We will prove this theorem using the idea in [6]. Let $f : S^1 \to S^1$ be a continuous monotone map, $|\deg f| = k$. Then for any $x \in S^1$, $f^{-1}(x)$ is a set consist of k points, denote $f^{-1}(x) = \{x_1, x_2, \ldots, x_n\}$. Let $\alpha_{f,1} = (x_1, x_2), \ldots, \alpha_{f,k-1} = (x_{k-1}, x_k), \alpha_{f,k} = (x_k, x_1)$. Then we get a finite partition $\xi_f = \{\alpha_{f,1}, \alpha_{f,2}, \ldots, \alpha_{f,k}\}$ of S^1, where $f(\alpha_{f,i}) = S^1$ and $\alpha_{f,i} \cap \alpha_{f,j} = \emptyset$ for $1 \leq i \neq j \leq k$.

Lemma 2.2. Let $f_1, \infty = \{f_i\}_{i=1}^{\infty}$ be a sequence of equi-continuous monotone maps of S^1. Then there exists a constant $a > 0$, such that for every $f_i(i \geq 1)$ and any partition $\xi_f_i = \{\alpha_{f_i,1}, \alpha_{f_i,2}, \ldots, \alpha_{f_i,k_i}\}$ of S^1 defined as above, we have

$$\text{diam} \alpha_{f_i,j} \geq a, \ 1 \leq j \leq k_i,$$

where $k_i = |\deg f_i|$.

Proof. Since $\{f_i\}_{i=1}^{\infty}$ is equi-continuous, then for $\varepsilon = \frac{1}{2}$, there exists a constant $a > 0$ such that

$$d(x, y) < a \implies d(f_i(x), f_i(y)) < \varepsilon, \ \forall i \in \mathbb{N}, \ x, y \in S^1.$$

Note that for every $f_i(i \geq 1)$ and any partition $\xi_f_i = \{\alpha_{f_i,1}, \alpha_{f_i,2}, \ldots, \alpha_{f_i,k_i}\}$ of S^1 defined as above, $f_i(\alpha_{f_i,j}) = S^1(1 \leq j \leq k_i)$ and $\text{diam} S^1 = 1$, we have $\text{diam} \alpha_{f_i,j} \geq a, \ 1 \leq j \leq k_i$.

\[\Box\]
Lemma 2.3. Let \(f_{1,\infty} = \{f_i\}_{i=1}^{\infty} \) be a sequence of equi-continuous monotone maps of \(S^1 \), \(\{\xi_{f_i} = \{\alpha_{f_i,1}, \alpha_{f_i,2}, \ldots, \alpha_{f_i,k_i}\}\}_{i=1}^{\infty} \) be any sequence of partitions of \(S^1 \) defined as above. Then for the new sequence of partitions of \(S^1 \)
\[
\{\xi^n_{f_1} = \{f_1^{-(n-1)}(\alpha_{f_n,j}) \mid \alpha_{f_n,j} \in \xi_f, \ 1 \leq j \leq k_n\}\}_{n=1}^{\infty},
\]
we have
\[
h(f_{1,\infty}) \leq \limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi^n_{f_1} \leq h(f_{1,\infty}) + \log 2.
\]

Proof. For any \(x \in S^1 \), let \(B_d(x, \varepsilon) = \{y \in S^1 \mid d(x, y) < \varepsilon\} \). By the definition of \(\xi^n_{f_1} \), for any given \(n \in \mathbb{N} \), there are \(n-1 \) new partitions of \(S^1 \): \(\xi^n_{f_1} = \{\alpha'_{f_i,1}, \alpha'_{f_i,2}, \ldots, \alpha'_{f_i,k_i}\}, \ 1 \leq i \leq n-1 \), such that
\[
\xi^n_{f_1} = \left\{\bigcap_{i=1}^{n} f_1^{-(i-1)}(\alpha'_{f_i,j}) \mid \alpha'_{f_i,j} \in \xi^n_{f_1}, \ 1 \leq j \leq k_i\right\}.
\]
by Lemma 2.2, diam \(\alpha'_{f_i,j} \geq a \) for any \(1 \leq i \leq n-1, \ 1 \leq j \leq k_i \).

Let \(0 < \varepsilon < \frac{a}{2} \) (the meaning of \(a \) is in Lemma 2.2), and \(E \) be an \((n, f_{1,\infty}, \varepsilon)\)-spanning set of minimal cardinality of \(S^1 \). It can be seen that for any \(x \in E \) and \(0 \leq i \leq n-1 \), the \(\varepsilon \)-neighborhood \(B_d(f^n_{1}(x), \varepsilon) \) of \(f^n_{1}(x) \) intersects at most 2 elements of \(\xi_f^n \). So \(\overline{B_d(x, \varepsilon)} \) intersects at most \(2^n \) elements of \(\xi^n_{f_1} \). By the definition of spanning set, \(\bigcup_{x \in E} \overline{B_d(x, \varepsilon)} = S^1 \), then \(\text{card } \xi^n_{f_1} \leq 2^n \text{card } E \). Therefore,
\[
(1) \qquad \limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi^n_{f_1} \leq h(f_{1,\infty}) + \log 2.
\]

Now we take an arbitrary \(0 < \varepsilon < \frac{1}{2} \) and choose an \((n, f_{1,\infty}, \varepsilon)\)-separated set \(F \) of maximal cardinality of \(S^1 \). By the definition of separated set, for any \(\alpha \in \xi^n_{f_1} \) and any two adjacent points \(x, y \in \alpha \cap F \), there exists \(j \) with \(0 \leq j \leq n-1 \) such that \(d(f^n_1(x), f^n_1(y)) > \varepsilon \). Since \(f^n_1 \) is monotone on \(\alpha \), then \(f^n_1(x) \) and \(f^n_1(y) \) are also two adjacent points. Hence, for each \(0 \leq j \leq n-1 \), there are at most \(M = \left\lfloor \frac{1}{\varepsilon} \right\rfloor + 1 \) pairs adjacent points which are more than \(\varepsilon \) apart in \(f^n_1(\alpha \cap F) \). We claim that there are at most \(nM + 1 \) points in \(\alpha \cap F \). In fact, if there are \(nM + 2 \) points in \(\alpha \cap F \), then there are at least \(nM + 1 \) pairs adjacent points. As mentioned above, for any two adjacent points \(x, y \in \alpha \cap F \), there exists \(j \) with \(0 \leq j \leq n-1 \) such that \(d(f^n_1(x), f^n_1(y)) > \varepsilon \). This implies that
there exists at least one \(0 \leq s \leq n - 1\) such that \(d(f_s^*(x), f_s^*(y)) > \varepsilon\) for at least \(M+1\) pairs adjacent points. This contradicts with the definition of \(M\).

In such a way, we have \(\text{card}(\alpha \cap F) \leq nM + 1\). Hence, \(\text{card}F \leq (nM + 1)\) \(\text{card} \xi_{f_1^n}\). Furthermore, we have

\[
\frac{1}{n} \log s(n, f_1^\infty, \varepsilon) \leq \frac{1}{n} \log \text{card} \xi_{f_1^n} + \frac{1}{n} \log(nM + 1).
\]

Letting \(n \to \infty\), we have

\[
\limsup_{n \to \infty} \frac{1}{n} \log s(n, f_1^\infty, \varepsilon) \leq \limsup_{n \to \infty} \frac{1}{n} \log \text{card} \xi_{f_1^n}.
\]

Taking limits as \(\varepsilon\) goes to 0 establish the following inequality:

(2) \(h(f_1^\infty) \leq \limsup_{n \to \infty} \frac{1}{n} \log \text{card} \xi_{f_1^n}\).

Then (1) and (2) yields

\[
h(f_1^\infty) \leq \limsup_{n \to \infty} \frac{1}{n} \log \text{card} \xi_{f_1^n} \leq h(f_1^\infty) + \log 2.
\]

Lemma 2.4. Let \(m\) be any given positive integer. Then for the sequence of maps \(g_1^\infty\) defined as above and the relevant sequence of partition \(\{\xi_{g_1^n}\}_{n=1}^\infty\), we have

\[
\limsup_{n \to \infty} \frac{1}{n} \log \text{card} \xi_{g_1^n} = m \limsup_{n \to \infty} \frac{1}{n} \log \text{card} \xi_{f_1^n}.
\]

Proof. By Lemma 2.2, for any \(i \in \mathbb{N}\), \(\text{card} \xi_{f_i} \leq N := \lceil \frac{1}{a} \rceil + 1\). Then, for any positive integer \(n = lm + j, 0 \leq j \leq m - 1\), we have

\[
\text{card} \xi_{f_1^{lm}} \leq \text{card} \xi_{f_1^n} \leq N^m \text{card} \xi_{f_1^{lm}}.
\]
So
\[
\limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi f^n = \limsup_{l \to \infty} \frac{1}{lm} \log \text{card } \xi f^l
\]
\[
= \frac{1}{m} \limsup_{l \to \infty} \frac{1}{l} \log \text{card } \xi g^l.
\]
Therefore,
\[
\limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi g^n = m \limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi f^n.
\]

Lemma 2.5. ([7]). If \(f_1, \infty = \{ f_i \}_{i=1}^{\infty} \) is a sequence of equi-continuous maps on a compact metric space, then for any \(m \in \mathbb{N} \), we have
\[
h(f_1, \infty) = m \cdot h(f_1, \infty).
\]

Proof of Theorem 2.1. For any \(\varepsilon > 0 \), take \(m \in \mathbb{N} \) such that \(\frac{\log 2}{m} < \varepsilon \).

Since \(f_1, \infty \) is a sequence of monotone equi-continuous maps on \(S^1 \), as mentioned above, it is easy to see that \(g_1, \infty = f_1, \infty \) is also a sequence of equi-continuous monotone maps on \(S^1 \). By Lemma 2.3, we get
\[
h(f_1, \infty) \leq \limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi g^n \leq h(f_1, \infty) + \log 2.
\]
Using Lemmas 2.4 and 2.5, and notice the way \(m \) is taken, we get
\[
h(f_1, \infty) \leq \limsup_{n \to \infty} \frac{1}{n} \log \text{card } \xi f^n \leq h(f_1, \infty) + \varepsilon.
\]
Since \(\varepsilon \) is arbitrary, noting that \(\text{card } \xi f^n = \prod_{i=1}^{n} | \deg f_i | \), we get immediately
\[
h(f_1, \infty) = \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} | \deg f_i |.
\]

Corollary 2.6. If \(f_1, \infty = \{ f_i \}_{i=1}^{\infty} \) is a sequence of equi-continuous monotone maps of \(S^1 \), and the absolute values of the degrees of the mappings are the same, denote it by \(k \), then \(h(f_1, \infty) = \log k \).

In particular, (Theorem in [5]) If \(f : S^1 \to S^1 \) is a continuous monotone map, then \(h(f) = \log | \deg f | \).
Corollary 2.7. If every element of the sequence \(\{f_i\}_{i=1}^\infty \) on \(S^1 \) is chosen from a set consisted of finite continuous monotone maps, then
\[
h(f_{1,\infty}) = \lim_{n \to \infty} \frac{1}{n} \log \prod_{i=1}^{n} |\deg f_i|.
\]

Proof. It is only to note that the continuous map on compact space is uniformly continuous, and finite uniformly continuous maps are equi-continuous. \(\Box \)

Corollary 2.8. Let \(f \) be an expansive map of \(S^1 \), i.e., \(f \) be of \(C^1 \), and for every lift \(F : R^1 \to R^1 \) of it, \(|F'(x)| > 1, \forall x \in R \). If \(\{f_i\}_{i=1}^\infty \) are generated by sufficiently small \(C^1 \)-perturbation of \(f \), then \(h(f_{1,\infty}) = \log |\deg f| \).

Proof. Note that the expansive map of \(S^1 \) is strictly monotone and structurally stable ([13]). Also note the degree of the mapping is an invariant of topological conjugacy. Therefore, if every element of \(\{f_i\}_{i=1}^\infty \) is chosen from the sufficiently small \(C^1 \)-neighborhood of \(f \), then \(\{f_i\}_{i=1}^\infty \) must be a sequence of equi-continuous monotone mappings, and \(\deg f_i = \deg f, \forall i \in N \). From Lemma 2.6, we have \(h(f_{1,\infty}) = \log |\deg f| \). \(\Box \)

3. Applications

Proposition 3.1. ([2]). Let \(X, Y \) be compact metric spaces, \(F : X \to X, f : Y \to Y \) be continuous maps, \(\pi : X \to Y \) be a surjective continuous map, and satisfy \(\pi \circ F = f \circ \pi \), that is, \(f \) and \(F \) are topological semi-conjugate and \(f \) is the factor of \(F \). Then
\[
h(f) \leq h(F) \leq h(f) + \sup_{y \in Y} h(F, \pi^{-1}(y)).
\]

Let \(X, Y \) be compact metric spaces. A continuous map \(F : X \times Y \to X \times Y \) is called a skew-product, if there exist a continuous map \(f \) of \(X \) and a set of continuous maps \(\{g_x \mid x \in X\} \) of \(Y \) which depend on \(x \) continuously, such that \(F(x, y) = (f(x), g_x(y)), \forall x \in X, y \in Y \). By Proposition 3.1, we can get that: for the skew-product \(F : X \times Y \to X \times Y \), we have
\[
h(f) \leq h(F) \leq h(f) + \sup_{x \in X} h(F, \pi^{-1}(x)),
\]
where \(\pi : X \times Y \to X, (x, y) \mapsto x \) is the natural projection.
Proposition 3.2. ([10]). If \(f \) is a piecewise monotone continuous self-map of \(I \), then
\[
h(f) = \lim_{n \to \infty} \frac{1}{n} \log C_n,
\]
where \(C_n \) denotes the number of pieces of monotonicity of \(f^n \).

Corollary 3.3. (1) Let \(F(x, y) = (f(x), g_x(y)) \) be a skew product of annular \(I \times S^1 \). If \(f \) is piecewise monotone, \(\{g_x \mid x \in I\} \) is a sequence of equi-continuous monotone maps, then
\[
\lim_{n \to \infty} \frac{1}{n} \log C_n \leq h(F) \leq \lim_{n \to \infty} \frac{1}{n} \log \prod_{i=0}^{n-1} |\deg g_{f^i(x)}|.
\]

(2) Let \(F(x, y) = (f(x), g_x(y)) \) be a skew product of torus \(S^1 \times S^1 \). If \(\{f\} \cup \{g_x \mid x \in S^1\} \) is a sequence of equi-continuous monotone maps, then
\[
\log |\deg f| \leq h(F) \leq \log |\deg f| + \sup_{x \in S^1} \limsup_{n \to \infty} \frac{1}{n} \log \prod_{i=0}^{n-1} |\deg g_{f^i(x)}|.
\]

Proof. Firstly, note that for any skew product \(F : X \times Y \to X \times Y \), and any \(x \in X \), we have
\[
h(F, \pi^{-1}(x)) = h(\{g_{f^i-1(x)}\}_{i=1}^{\infty}).
\]
From Propositions 3.1, 3.2 and Theorem 2.1, we can get (1). From Proposition 3.1, Corollary 2.6 and Theorem 2.1, we can get (2). \(\square \)

Let \((M, \rho)\) be a smooth 2-dimensional closed manifold (i.e., \(M \) is compact and without boundary), \(TM \) be the tangent bundle of \(M \). We denote \(|\cdot|\), \(\|\cdot\| \) and \(d(\cdot, \cdot) \), respectively, the norm on \(TM \), the operator norm and the metric on \(M \) induced by the Riemannian metric. Denote by \(SM = \bigcup_{x \in M} S_xM \) the unit tangent bundle of \(M \), where \(S_xM = \{u \in T_xM \mid |u| = 1\} \). Note that \(SM \) is a compact metric space and its metric \(d \) can be derived from \(\rho \). That is, the restriction of \(d \) on \(S_xM \) is consistent with the restriction of the metric of \(T_xM \), which derived from the inner product \(\rho_x \), on \(S_xM \).

Let \(f : M \to M \) be a \(C^1 \) diffeomorphism, \(Df : TM \to TM \) be the tangent map of \(f \). Let \(D^2f : SM \to SM \), \(u \mapsto \frac{Df(x)_{u}}{|Df(x)_{u}|} \), \(u \in T_xM \). Then \((SM, D^2f)\) is a compact topological system, we also call it the extension...
of f on the unit tangent bundle. One can see [8] for some connections of the dynamics between f and its extension $D^2 f$.

Proposition 3.4. Let $f : M \rightarrow M$ be a C^1 diffeomorphism on a smooth two-dimensional closed Riemannian manifold M, and $D^2 f$ be its extension on the unit tangent bundle SM. Then

$$h(f) = h(D^2 f).$$

Proof. Let $\pi : SM \rightarrow M$, $u \mapsto x$, $u \in S_x M$ be the natural projection. It is easy to verify that $\pi \circ D^2 f = f \circ \pi$. By Proposition 3.1, we have

$$h(f) \leq h(D^2 f) \leq h(f) + \sup_{x \in M} h(D^2 f, \pi^{-1}(x)).$$

Since M is compact, f is a C^1 diffeomorphism, then we can take

$$M = \max_{x \in M} \| Df(x) \|, \quad m = \min_{x \in M} \| Df(x) \|.$$

For any $x \in M$, $u, v \in S_x M$, we have

$$d(D^2 f(x)u, D^2 f(x)v)$$

$$= |D^2 f(x)u - D^2 f(x)v|$$

$$= \left| \frac{Df(x)u}{|Df(x)u|} - \frac{Df(x)v}{|Df(x)v|} \right|$$

$$= \frac{1}{|Df(x)u| \cdot |Df(x)v|} \left| |Df(x)v| \cdot Df(x)u - |Df(x)u| \cdot Df(x)v \right|$$

$$\leq \frac{1}{m^2} \left| |Df(x)v| \cdot [Df(x)(u - v)] - [Df(x)u] \cdot Df(x)v \right|$$

$$\leq \frac{1}{m^2} [M^2 (u - v) + M |Df(x)(u - v)|]$$

$$\leq \frac{2M^2}{m^2} |u - v|.$$

This shows that $\{D^2 f(x) \mid x \in M\}$ are equi-continuous with respect to d.

Since $D^2 f(x) : S_x M \rightarrow S_{f(x)} M$ is a homeomorphism, then it is monotone and $|\deg D^2 f(x)| = 1$. Hence, from Theorem 2.1 and Corollary 2.6, we have $h(D^2 f, \pi^{-1}(x)) = 0$ for any $x \in M$. Therefore, from (3) we have

$$h(f) = h(D^2 f).$$

\square
References

College of Mathematics and Information Science
Hebei Normal University
Shijiazhuang, 050016, P. R. China
E-mail: yjzhu@heinfo.net