MARCINKIEWICZ-ZYGMUND LAW OF LARGE NUMBERS FOR BLOCKWISE ADAPTED SEQUENCES

NGUYEN VAN QUANG AND LE VAN THANH

Abstract. In this paper we establish the Marcinkiewicz-Zygmund strong law of large numbers for blockwise adapted sequences. Some related results are considered.

1. Introduction and notations

In [5] and [8] it was shown that some properties of independent sequences of random variables can be applied to the sequences consisting of independent blocks. Particularly, it was proved in [8] that if \((X_i)_{i=1}^\infty\), \(EX_i = 0\) is a sequence independent in blocks \([2^k, 2^{k+1})\), then it satisfies the Kolmogorov’s theorem: the condition \(\sum_{i=1}^\infty (EX_i^{2})i^{-2} < \infty\) implies the strong law large numbers (s.l.l.n.), i.e.,

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n X_i = 0 \text{ a.s.}
\]

Strong law of large numbers for blockwise independent random variables was studied by V. F. Gaposhkin [4].

Marcinkiewicz-Zygmund type strong law of large numbers was studied by many authors. In 1981, N. Etemadi [3] proved that if \(\{X_n, n \geq 1\}\) is a sequence of pairwise i.i.d. random variables with \(E|X_1| < \infty\), then

\[
\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n (X_i - EX_1) = 0 \text{ a.s.}
\]

Later, in 1985, B. D. Choi and S. H. Sung [2] have shown that if \(\{X_n, n \geq 1\}\) are pairwise independent and are dominated in distribution

Received January 21, 2005.
2000 Mathematics Subject Classification: 60F05, 60F15.
Key words and phrases: Blockwise independent, blockwise adapted sequence, block martingale difference, Marcinkiewicz-Zygmund law of large numbers.
This work was supported by the National Science Council of Vietnam.
by a random variable X with $E|X|^p(\log^+ |X|)^2 < \infty$, $1 < p < 2$, then
\[
\lim_{n \to \infty} \frac{1}{n^p} \sum_{i=1}^{n} (X_i - EX_i) = 0 \text{ a.s.}
\]

In this paper we establish the Marcinkiewicz-Zygmund strong law of large numbers for blockwise adapted sequences. Some related results are considered.

Let $\{\omega(n), n \geq 1\}$ be a strictly increasing sequence of positive integers with $\omega(1) = 1$. For each $k \geq 1$, we set $\Delta_k = [\omega(k), \omega(k + 1))$. We recall that the sequence $\{X_i, i \geq 1\}$ of random variables is blockwise independent with respect to blocks Δ_k, if for any fixed k, the sequences $\{X_i\}_{i \in \Delta_k}$ are independent. Let $\{F_i, i \geq 1\}$ be a sequence of σ-fields such that for any fixed k, the sequences $\{F_i\}_{i \in \Delta_k}$ are increasing. The sequence $\{X_i, i \geq 1\}$ of random variables is said to be blockwise adapted to $\{F_i, i \geq 1\}$, if each X_i is measurable with respect to F_i. The sequence $\{X_i, F_i, i \geq 1\}$ is said to be a block martingale difference with respect to blocks Δ_k, if for any fixed k, the sequences $\{X_i, F_i\}_{i \in \Delta_k}$ are martingale differences. Denote

\[
N_m = \min\{n | \omega(n) \geq 2^m\},
\]
\[
s_m = N_{m+1} - N_m + 1,
\]
\[
\varphi(i) = \max_{k \leq m} s_k \text{ if } i \in [2^m, 2^{m+1}),
\]
\[
\Delta^{(m)} = [2^m, 2^{m+1}), m \geq 0,
\]
\[
\Delta_k^{(m)} = \Delta_k \cap \Delta^{(m)}, m \geq 0, k \geq 1,
\]
\[
p_m = \min\{k : \Delta_k^{(m)} \neq \emptyset\},
\]
\[
q_m = \max\{k : \Delta_k^{(m)} \neq \emptyset\}.
\]

Since $\omega(N_m - 1) < 2^m, \omega(N_m) \geq 2^m, \omega(N_{m+1}) \geq 2^{m+1}$ for each $m \geq 1$, the number of nonempty blocks $[\Delta_k^{(m)}]$ is not large than $s_m = N_{m+1} - N_m + 1$. Assume $\Delta_k^{(m)} \neq \emptyset$, let $r_k^{(m)} = \min\{r : r \in \Delta_k^{(m)}\}$.

The sequence $\{X_n, n \geq 1\}$ is said to be stochastically dominated by a random variable X if there exists a constant $C > 0$ such that

\[
P\{|X_n| > t\} \leq CP\{|X| > t\}
\]

for all nonnegative real numbers t and for all $n \geq 1$.
Finally, the symbol C denotes throughout a generic constant ($0 < C < \infty$) which is not necessarily the same one in each appearance.

2. Lemmas

In the sequel we will need the following lemmas.

Lemma 2.1. (Doob’s Inequality) If $\{X_i, \mathcal{F}_i\}_{i=1}^N$ is a martingale difference, $E|X_i|^p < \infty$ ($1 < p < \infty$), then

$$E\left| \max_{k \leq N} \sum_{i=1}^k X_i \right|^p \leq \left(\frac{p}{p-1} \right)^p E\left| \sum_{i=1}^N X_i \right|^p.$$

The next lemma is due to von Bahr and Esseen [1].

Lemma 2.2. (von Bahr and Esseen [1]) Let $\{X_i, \mathcal{F}_i\}_{i=1}^N$ be random variables such that $E\{X_{m+1}|S_m\} = 0$ for $0 \leq m \leq N-1$, where $S_0 = 0$ and $S_m = \sum_{i=1}^m X_i$ for $1 \leq m \leq N$, then

$$E|S_N|^p \leq C \sum_{i=1}^N E|X_i|^p$$

for all $1 \leq p \leq 2$, where C is a constant independent of N.

By lemmas 2.1 and 2.2, we get the following lemma.

Lemma 2.3. If $\{X_i, \mathcal{F}_i\}_{i=1}^N$ is a martingale difference, $E|X_i|^p \leq \infty$ ($1 \leq p \leq 2$), then

$$E\left| \max_{k \leq N} \sum_{i=1}^k X_i \right|^p \leq C \sum_{i=1}^N E|X_i|^p,$$

where C is a constant independent of N.

Proof. In the case $p = 1$, we have

$$E\left| \max_{k \leq N} \sum_{i=1}^k X_i \right| \leq E\left(\sum_{i=1}^N |X_i| \right) = \sum_{i=1}^N E|X_i|.$$

In the case $1 < p \leq 2$,

$$E\left| \max_{k \leq N} \sum_{i=1}^k X_i \right|^p \leq \left(\frac{p}{p-1} \right)^p E\left| \sum_{i=1}^N X_i \right|^p \text{ (By Lemma 2.1)}$$

$$\leq C \sum_{i=1}^N E|X_i|^p \text{ (By Lemma 2.2)}.$$
The proof of the lemma is completed.

Lemma 2.4. If $q > 1$ and $\{x_n, n \geq 0\}$ is a sequence of constants such that $\lim_{n \to \infty} x_n = 0$, then

$$\lim_{n \to \infty} q^{-n} \sum_{k=0}^{n} q^{k+1} x_k = 0.$$

Proof. Let $s = q + \sum_{i=0}^{\infty} q^{-i}$. For any $\epsilon > 0$, there exists k_0 such that $|x_k| < \frac{\epsilon}{2s}$ for all $k \geq k_0$. Since $\lim_{n \to \infty} q^{-n} = 0$, so, there exists $n_0 \geq k_0$ such that $|q^{-n} \sum_{k=0}^{k_0} q^{k+1} x_k| < \frac{\epsilon}{2}$. It follows that, for all $n \geq n_0$,

$$|q^{-n} \sum_{k=0}^{n} q^{k+1} x_k| \leq |q^{-n} \sum_{k=0}^{k_0} q^{k+1} x_k| + |q^{-n} \sum_{k=k_0+1}^{n} q^{k+1} x_k|$$

$$\leq \frac{\epsilon}{2} + \frac{\epsilon}{2s} (q + 1 + \frac{1}{q} + \cdots)$$

$$= \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon,$$

which completes the proof. □

3. Main result

With the notations and lemmas accounted for, main results may now be established. Theorem 3.1 establishes the strong law of large numbers for block martingale differences.

Theorem 3.1. Let $\{X_i, \mathcal{F}_i\}_{i=1}^{\infty}$ be a block martingale difference with respect to blocks Δ_k, $(1 \leq p \leq 2)$. If

$$\sum_{i=1}^{\infty} \frac{E|X_i|^2}{i^p} < \infty,$$

then

$$\sum_{i=1}^{n} \frac{X_i}{n^{1/p}\phi^n(n)} \to 0 \quad a.s. \text{ as } n \to \infty.$$

Proof. Let

$$\gamma_k^{(m)} = \max_{n \in \Delta_k^{(m)}} \left| \sum_{i=r_k^{(m)}}^{n} X_i \right|, \quad m \geq 0, k \geq 1.$$
\[\gamma_m = 2^{-m-1} \varphi^{-1}(2^m) \sum_{p_m \leq k \leq q_m} \gamma_k^{(m)}, \quad m \geq 0. \]

Using Lemma 2.3 for martingale differences \(\{X_i, \mathcal{F}_i, i \in \Delta_k^{(m)}\} \), we have
\[E|\gamma_k^{(m)}|^2 \leq C \sum_{i \in \Delta_k^{(m)}} EX_i^2, \text{ for all } m \geq 0, k \geq 1. \]

It implies
\[E|\gamma_m|^2 \leq 2^{-2m-2} \varphi^{-1}(2^m) s_m \sum_{k=p_m}^{q_m} E|\gamma_k^{(m)}|^2 \]
\[\leq 2^{-2m-2} \sum_{k=p_m}^{q_m} E|\gamma_k^{(m)}|^2 \]
\[\leq C 2^{-2m-2} \sum_{i=2^m}^{2^{m+1}-1} EX_i^2 \]
\[\leq C \sum_{i=2^m}^{2^{m+1}-1} \frac{X_i^2}{i^p}. \]

Thus
\[\sum_{m=0}^{\infty} E|\gamma_m|^2 \leq C \sum_{i=1}^{\infty} \frac{X_i^2}{i^p} < \infty. \]

By the Markov inequality and the Borel-Cantelli lemma, we get
\[\lim_{m \to \infty} \gamma_m = 0 \quad a.s. \quad (3.1) \]

On the other hand
\[0 \leq 2^{-m} \varphi^{-1}(2^m) \sum_{k=0}^{m} \sum_{i=p_k}^{q_k} \gamma_i^{(k)} \leq 2^{-m} \sum_{k=0}^{m} 2^{k+1} \gamma_k. \quad (3.2) \]

By \((3.1), (3.2) \) and Lemma 2.4, we get
\[\lim_{m \to \infty} 2^{-m} \varphi^{-1}(2^m) \sum_{k=0}^{m} \sum_{i=p_k}^{q_k} \gamma_i^{(k)} = 0 \quad a.s. \quad (3.3) \]
Assume $n \in \Delta_k^{(m)}$, we have

$$0 \leq n^{-\frac{1}{2}} \varphi^{-\frac{1}{2}}(n) \sum_{i=1}^{n} X_i$$

(3.4)

$$\leq 2^{-m} \varphi^{-\frac{1}{2}}(2^m) \sum_{k=0}^{m} \sum_{i=p_k}^{q_k} \gamma^{(k)}_i.$$

By (3.3) and (3.4), we get

$$n^{-\frac{1}{2}} \varphi^{-\frac{1}{2}}(n) \sum_{i=1}^{n} X_i \to 0 \text{ a.s. (as } n \to \infty \text{).}$$

The proof is completed. □

In the next theorem, we set up the Marcinkiewicz-Zygmund law of large numbers for blockwise adapted sequences which are stochastically dominated by a random variable X.

Theorem 3.2. Let $\{\mathcal{F}_i, i \geq 1\}$ be a sequence of σ-fields such that for any fixed k, the sequences $\{\mathcal{F}_i, i \in \Delta_k\}$ are increasing and $\{X_i, i \geq 1\}$ is blockwise adapted to $\{\mathcal{F}_i, i \geq 1\}$. If $\{X_i, i \geq 1\}$ is stochastically dominated by a random variable X such that either

$$E|X| \log^+ |X| < \infty \text{ if } p = 1,$$

or

$$E|X|^p < \infty \text{ if } 1 < p < 2,$$

then

$$\lim_{n \to \infty} \frac{1}{n^{\frac{1}{2}} \varphi(n)} \sum_{i=1}^{n} (X_i - a_i) = 0 \text{ a.s.,}$$

where $a_i = EX_i$ if $i = r^{(m)}_k$ and $a_i = E(X_i|\mathcal{F}_{i-1})$ if $i \neq r^{(m)}_k$ for $k \geq 1$ and $m \geq 0$.

Proof. Let $X'_i = X_i I\{|X_i| \leq \frac{1}{i^p}\}$, $b_i = EX'_i$ if $i = r^{(m)}_k$ and $b_i = E(X'_i|\mathcal{F}_{i-1})$ if $i \neq r^{(m)}_k$ for $k \geq 1$ and $m \geq 0$. We have

$$E(X'_i - b_i)^2 \leq E|X'_i|^2 = \int_0^{i^p} P(|X_i|^2 > t)dt$$
\[
\leq C \int_{0}^{\frac{1}{i^{1/p}}} P(|X|^2 > t)dt
\]

\[
= C \int_{0}^{\frac{1}{i^{1/p}}} (P(t < |X|^2 < \frac{2}{i^{1/p}}) + P(i^{1/p} \leq |X|^2)) dt
\]

\[
= C\left(\int_{0}^{\frac{1}{i^{1/p}}} x^2 dF(x) + i^{\frac{2}{p}} P(i^{\frac{2}{p}} \leq |X|^2) \right),
\]

where \(F(x) \) is the distribution function of \(X \).

\[
\sum_{i=1}^{\infty} \frac{1}{i^{2/p}} \int_{0}^{\frac{1}{i^{1/p}}} x^2 dF(x) \leq C \sum_{i=1}^{\infty} \frac{1}{i^{2/p}} \sum_{k=1}^{i} \int_{(k-1)^{1/p}}^{k^{1/p}} x^2 dF(x)
\]

\[
\leq C \sum_{k=1}^{\infty} \sum_{i=k}^{\infty} \frac{1}{i^{2/p}} \int_{(k-1)^{1/p}}^{k^{1/p}} x^2 dF(x)
\]

\[
\leq C \sum_{k=1}^{\infty} k^{\frac{p-2}{p}} \int_{(k-1)^{1/p}}^{k^{1/p}} x^2 dF(x)
\]

\[
\leq C \sum_{k=1}^{\infty} \int_{(k-1)^{1/p}}^{k^{1/p}} x^p dF(x)
\]

\[
\leq CE|X|^p < \infty,
\]

and

\[
\sum_{i=1}^{\infty} P(i^{\frac{2}{p}} \leq |X|^2) = \sum_{i=1}^{\infty} P(i \leq |X|^p) \leq CE|X|^p < \infty.
\]

Hence

\[
\sum_{i=1}^{\infty} \frac{E(X'_i - b_i)^2}{i^{1/p}} < \infty.
\]

For each \(k > 1 \) and \(m \geq 0 \), sequence \(\{X'_i - b_i, \mathcal{F}_i, i \in \Delta_k^{(m)}\} \) is a martingale difference. By using the proof of Theorem 3.1, we get

\[
(3.5) \quad n^{-\frac{1}{p}} \varphi^{-\frac{1}{2}}(n) \sum_{i=1}^{n} (X'_i - b_i) \to 0 \text{ a.s. (as } n \to \infty). \]
Next,
\[\sum_{i=1}^{\infty} P(X_i \neq X'_i) = \sum_{i=1}^{\infty} P(|X_i| > \frac{i^p}{i^p}) \]
\[\leq C \sum_{i=1}^{\infty} P(|X| > \frac{i^p}{i^p}) \]
(3.6)
\[\leq C \sum_{i=1}^{\infty} P(|X|^p > i) \leq CE[X]^p < \infty. \]

Finally, we prove that
(3.7) \[\lim_{n \to \infty} \frac{1}{n^{p'}} \sum_{i=1}^{n} (a_i - b_i) = 0 \text{ a.s.} \]

In the case \(p=1 \),
\[\sum_{n=1}^{\infty} n^{-1} E[|X_n|I(|X_n| > n)] = \sum_{n=1}^{\infty} n^{-1} \int_{n}^{\infty} P(|X_n| > x) \, dx \]
\[\leq C \sum_{n=1}^{\infty} n^{-1} \int_{n}^{\infty} P(|X| > x) \, dx \]
\[= C \sum_{n=1}^{\infty} n^{-1} \sum_{i=n}^{\infty} \int_{i}^{i+1} P(|X| > x) \, dx \]
\[\leq C \sum_{i=1}^{\infty} P(|X| > i) \sum_{n=1}^{i} n^{-1} \]
\[\leq C \sum_{i=1}^{\infty} (1 + \log i) P(|X| > i) < \infty. \]

This implies that \(\sum_{n=1}^{\infty} n^{-1}(a_n - b_n) < \infty \) a.s. By using Kronecker’s lemma, we get (3.7).

In the case \(1 < p < 2 \), since
\[\sum_{n=1}^{\infty} n^{-\frac{3}{2}} E[|X_n|I(|X_n| > n^{\frac{3}{2}})] \]
Marcinkiewicz-Zygmund law of large numbers

\[\mathbb{E}\left|X\right|^p < \infty \quad (1 \leq p < 2) \]

It follows that

\[\sum_{n=1}^{\infty} n^{-\frac{1}{p}} (a_n - b_n) < \infty \text{ a.s..} \]

By Kronecker’s lemma, we get (3.7).

Combining (3.5), (3.6) and (3.7) we obtain

\[\lim_{n \to \infty} \frac{1}{n^\frac{1}{p} \varphi(n)} \sum_{i=1}^{n} (X_i - a_i) = 0 \text{ a.s.} \]

This completes the proof of theorem.

The following corollaries extend the classical Marcinkiewicz-Zygmund strong law of large numbers.

Corollary 3.3. Let \(\{X_i, i \geq 1\} \) be a sequence of blockwise independent random variables with respect to blocks \(\Delta_k \). If \(\{X_i, i \geq 1\} \) is stochastically dominated by a random variable \(X \), \(\mathbb{E}|X|^p < \infty \) \((1 \leq p < 2)\), then

\[\lim_{n \to \infty} \frac{1}{n^\frac{1}{p} \varphi(n)} \sum_{i=1}^{n} (X_i - EX_i) = 0 \text{ a.s.} \]

Proof. Let \(F_i = \sigma(X_{r_k}^{(m)}, \ldots, X_i) \) (the \(\sigma \)-field generated by \(X_{r_k}^{(m)}, \ldots, X_i \)) if \(i \in \Delta_k^{(m)} \). Then \(\{X_i, i \geq 1\} \) is blockwise adapted to \(\{F_i, i \geq 1\} \).

From the independence of sequence \(\{X_i, i \in \Delta_k^{(m)}\} \) we get for all \(k \) and \(m \)

\[E(X_i|F_{i-1}) = EX_i \text{ if } i \neq r_k^{(m)}. \]
By the proof of Theorem 3.2, we only need prove for the case $p = 1$.

In the case $p = 1$, also using the proof of Theorem 3.2, we get
\begin{equation}
(3.8) \quad n^{-1} \varphi^{-\frac{1}{2}}(n) \sum_{i=1}^{n} (X_i - EX'_i) \to 0 \text{ (as } n \to \infty),
\end{equation}
where $X'_i = X_i I(|X_i| \leq i)$. On the other hand
\[
E[|X_i|I(|X_i| > i)] = \int_{i}^{\infty} P(|X_i| > x)dx \\
\leq C \int_{i}^{\infty} P(|X| > x)dx \to 0 \text{ as } i \to \infty.
\]
Thus
\begin{equation}
(3.9) \quad |n^{-1} \sum_{i=1}^{n} (EX_i - EX'_i)| \leq n^{-1} \sum_{i=1}^{n} E[|X_i|I(|X_i| > i)] \to 0 \text{ as } n \to \infty.
\end{equation}
Combining (3.8) and (3.9) we obtain
\[
\lim_{n \to \infty} \frac{1}{n \varphi^\frac{1}{2}(n)} \sum_{i=1}^{n} (X_i - EX_i) = 0 \text{ a.s.}
\]
\[
\square
\]

Corollary 3.4. If $\omega(k) = 2^k$ (or $\omega(k) = \lfloor qk \rfloor, q > 1$) and $\{X_i, i \geq 1\}$ is Δ_k-independent, $P\{|X_i| \geq t\} \leq CP\{|X| \geq t\}$ for all nonnegative real numbers t, $E|X|^p < \infty$, $(1 \leq p < 2)$, then
\[
\lim_{n \to \infty} \frac{1}{n^p} \sum_{i=1}^{n} (X_i - EX_i) = 0 \text{ a.s.}
\]

Proof. Really, in that case $\varphi(i) = O(1)$, so, from Corollary 3.3, we obtain
\[
\lim_{n \to \infty} \frac{1}{n^p} \sum_{i=1}^{n} (X_i - EX_i) = 0 \text{ a.s.}
\]
\[
\square
\]

References

Marcinkiewicz-Zygmund law of large numbers

Nguyen Van Quang, Department of Mathematics, University of Vinh, 182 Le Duan, Vinh, Nghean, Vietnam
E-mail: nvquang@hotmail.com

Le Van Thanh, Department of Mathematics, University of Vinh, 182 Le Duan, Vinh, Nghean, Vietnam
E-mail: lvthanhvinh@yahoo.com