BOUNDED MATRICES OVER REGULAR RINGS

Shuqin Wang and Huanyin Chen

Abstract. In this paper, we investigate bounded matrices over regular rings. We observe that every bounded matrix over a regular ring can be described by idempotent matrices and invertible matrices. Let $A, B \in M_n(R)$ be bounded matrices over a regular ring R. We prove that $(AB)^d = U(BA)^dU^{-1}$ for some $U \in GL_n(R)$.

Let I be an ideal of a ring R. We say that I is a bounded ideal of R in case there exists a positive integer m such that $x^m = 0$ for all nilpotent $x \in I$. We say that $A \in M_n(R)$ is a bounded matrix provided $M_n(R)AM_n(R)$ is a bounded ideal of $M_n(R)$.

Throughout, all rings are associative rings with identities. $U(R)$ denotes the set of units of R, $M_n(R)$ denotes the ring of $n \times n$ matrices over R and $GL_n(R)$ stands for the n dimensional general linear group of R.

Lemma 1. Let $A \in M_n(R)$ be a bounded matrix over a regular ring R. Then there exists a bounded ideal I of R such that $A \in M_n(I)$.

Proof. Since A is a bounded matrix, $M_n(R)AM_n(R)$ is a bounded ideal of $M_n(R)$. Let e_{ij} be a usual matrix unit (1 ≤ $i, j \leq n$), i.e., in the (i, j)-position its entry is 1; otherwise, its entries are 0. One easily checks that $e_{ij}M_n(R)AM_n(R)e_{ij} \cong Ra_{ij}R$ and $e_{ij}M_n(R)e_{ij} \cong R$. That is, $Ra_{ij}R$ is a bounded ideal of R. By [9, Corollary 6.7], the sum of two ideals with index at most m must have index at most m; hence, we see

Received August 23, 2005.
2000 Mathematics Subject Classification: 16E50, 16U99.
Key words and phrases: bounded matrix, idempotent matrix, invertible matrix.
that $I = \sum_{1 \leq i,j \leq n} Ra_{ij} R$ is a bounded ideal of R. Clearly, $A \in M_n(I)$. Therefore we complete the proof.

A square matrix A over a ring R is said to admit a diagonal reduction if there exist some invertible matrices P and Q such that PAQ is a diagonal matrix. It is well known that every square matrix over unit-regular rings admits a diagonal reduction (cf. [10, Theorem 3]). P. Ara et al. have extended this result to separative exchange rings (cf. [2, Theorem 2.4]). On the other hand, Menal and Moncasi [11] showed that the diagonalizability for some rectangular matrix over some regular rings fails. Now we observe the following result.

Theorem 2. Every bounded matrix over a regular ring admits a diagonal reduction.

Proof. Let $A = (a_{ij}) \in M_n(R)$ be a bounded matrix over a regular ring R. By Lemma 1, there exists a bounded ideal I of R such that $A \in M_n(I)$. Using [11, Lemma 1.1], we have an idempotent $e \in I$ such that all $a_{ij} \in eRe$, and so $A \in M_n(eRe)$. As $e \in I$, we deduce that eRe is unit-regular. Applying [10, Theorem 3], there exist some $U', V' \in GL_n(eRe)$ such that $U'AV' = \text{diag}(r_1, \ldots, r_n)$ for some $r_1, \ldots, r_n \in eRe$. Set $U = U' + \text{diag}(1-e, \ldots, 1-e)$ and $V = V' + \text{diag}(1-e, \ldots, 1-e)$. Then $U, V \in GL_n(R)$. Furthermore, we have $UAV = U'AV' = \text{diag}(r_1, \ldots, r_n)$, as asserted.

Corollary 3. Every $n \times n (n \geq 2)$ bounded matrix over a regular ring is a sum of two invertible matrices.

Proof. Let $A = (a_{ij}) \in M_n(R)(n \geq 2)$ be a bounded matrix over a regular ring R. In view of Theorem 2, there exist $U, V \in GL_n(R)$ such that $UAV = \text{diag}(r_1, \ldots, r_n)$ for some $r_1, \ldots, r_n \in R$. Clearly, $\text{diag}(r_1, r_2, \ldots, r_n)$ is a sum of two invertible matrices, i.e., we have

$$\text{diag}(r_1, r_2, \ldots, r_n) = \begin{pmatrix}
 r_1 & 1 & \cdots & 0 & 0 \\
 0 & r_2 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & r_{n-1} & 1 \\
 1 & 0 & \cdots & 0 & 0
\end{pmatrix}$$
Bounded matrices over regular rings

\[
\begin{bmatrix}
0 & -1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -1 \\
-1 & 0 & \cdots & 0 & r_n
\end{bmatrix}
\]

Therefore we get

\[
A = U^{-1}
\begin{bmatrix}
 r_1 & 1 & \cdots & 0 & 0 \\
 0 & r_2 & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & r_{n-1} & 1 \\
 1 & 0 & \cdots & 0 & 0
\end{bmatrix}
V^{-1}
\]

\[
+ U^{-1}
\begin{bmatrix}
0 & -1 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & -1 \\
-1 & 0 & \cdots & 0 & r_n
\end{bmatrix}
V^{-1},
\]

as desired.

\begin{proof}
 If \(n \geq 2\), then the result holds by Corollary 3. We now assume that \(n = 1\). Let \(x \in R\) such that \(RxR\) is a bounded ideal of \(R\). In view of [11, Lemma 1.1], we have an idempotent \(e \in RxR\) such that \(x \in eRe\). As \(eRe \subseteq RxR\), we deduce that \(eRe\) is a regular ring of bounded index; hence, it is unit-regular. Thus we have an idempotent \(f \in eRe\) and a unit \(v \in eRe\) such that \(x = fv\). Let \(u = v + (1 - e)\). Then we have \(x = f(v + (1 - e)) = (1/2 + (2f - 1)/2)u = u/2 + (2f - 1)u/2\). Clearly, \(u/2, (2f - 1)u/2 = (u^{-1}(4f - 2))^{-1} \in U(R)\). Therefore we get the result.
\end{proof}

Corollary 4. Let \(R\) be a regular ring with \(1/2 \in R\). Then every \(n \times n\) bounded matrix over \(R\) is a sum of two invertible matrices.

A ring \(R\) is said to be a clean ring in case every element in \(R\) is a sum of an idempotent and a unit. We know that every strongly \(\pi\)-regular ring is a clean ring (cf. [15, Theorem 1]). That author proved that every exchange ring with artinian primitive factors is a clean ring (see [5, Theorem 1]). A natural problem is how to extend this fact to matrices over a ring which is not a clean ring.
Theorem 5. Every bounded matrix over a regular ring is a sum of an idempotent matrix and an invertible matrix.

Proof. Let \(A = (a_{ij}) \in M_n(R) \) be a bounded matrix over a regular ring \(R \). In view of Lemma 1, there exists a bounded ideal \(I \) of \(R \) such that \(A \in M_n(I) \). Since all \(a_{ij} \in I \), by [11, Lemma 1.1], we have an idempotent \(e \in I \) such that all \(a_{ij} \in eRe \); hence, \(A \in M_n(eRe) \). Clearly, \(eRe \) is a regular ring of bounded index. It follows by [9, Theorem 7.12] that \(M_n(eRe) \) is a regular ring of bounded index. Using [9, Theorem 7.15], we know that \(M_n(eRe) \) is a strongly \(\pi \)-regular ring; hence, it is a clean ring by [15, Theorem 1]. Thus we have an idempotent matrix \(E' \in M_n(eRe) \) and an invertible \(U' \in M_n(eRe) \) such that \(A = E + U \). Therefore
\[
A = E' + \text{diag}(1-e, \ldots, 1-e) + (U' - \text{diag}(1-e, \ldots, 1-e)).
\]
Let \(E = E' + \text{diag}(1-e, \ldots, 1-e) \) and \(U = U' - \text{diag}(1-e, \ldots, 1-e) \). Then \(E = E^2 \in M_n(R) \) and \(U \in GL_n(R) \). In addition, we have \(A = E + U \). Thus the result follows.

Analogously, we deduce that every bounded matrix over a regular ring is a product of an idempotent matrix and an invertible matrix. We denote the set of all lower triangular matrices by \(\mathcal{L} \), i.e., \(\mathcal{L} = \{ (a_{ij}) \mid a_{ij} = 0 \text{ whenever } i < j \} \), and denote the set of all upper triangular matrices by \(\mathcal{U} \), i.e., \(\mathcal{U} = \{ (a_{ij}) \mid a_{ij} = 0 \text{ whenever } i > j \} \).

Lemma 6. Let \(A \in M_n(R) \) be a matrix over a unit-regular ring \(R \). Then \(A \) can be written as \(A = LUM \), \(L \in \mathcal{L}, U \in \mathcal{U}, M \in \mathcal{L} \) and in \(U \) and \(M \) all the diagonal entries are equal to 1.

Proof. Obviously, \(R \) is a Hermite ring. On the other hand, \(R \) has stable range one. Therefore we get the result by [14, Theorem 3.1].

Theorem 7. Every bounded matrix over a regular ring is a product of at most three triangular matrices.

Proof. Let \(A = (a_{ij}) \in M_n(R) \). According to Lemma 1, there exists a bounded ideal \(I \) of \(R \) such that all \(A \in M_n(I) \). By [11, Lemma 1.1], we have an idempotent \(e \in I \) such that all \(a_{ij} \in eRe \); hence, \(A \in M_n(eRe) \). As \(eRe \) is a regular ring of bounded index, it follows from [9, Corollary 7.11] that \(eRe \) is unit-regular. Thus, by Lemma 6, \(A \) can be written as \(A = LUM \), \(L \in \mathcal{L}, U \in \mathcal{U}, M \in \mathcal{L} \) and in \(U \) and \(M \) all the diagonal entries are equal to \(e \). One directly checks that
\[
A = (L + \text{diag}(1-e, \ldots, 1-e))(U + \text{diag}(1-e, \ldots, 1-e))M \quad \text{and in } L + \text{diag}(1-e, \ldots, 1-e) \quad \text{and } U + \text{diag}(1-e, \ldots, 1-e) \quad \text{all the diagonal entries are equal to } e. \]

\(\square \)
COROLLARY 8. Let $A = (a_{ij}) \in M_n(R)$. If all $Ra_{ij}R$ are bounded ideals of R, then A is a product of at most three triangular matrices.

Proof. Let $I = \sum_{1 \leq i,j \leq n} Ra_{ij}R$. By [9, Corollary 7.8], I is a bounded ideal of R. It follows by [11, Lemma 1.1] that $A \in M_n(eRe)$ for some idempotent $e \in I$. Clearly, $M_n(eRe)$ is a regular ring of bounded index from [9, Theorem 7.12]. As a result, A is a bounded matrix over eRe. Using Theorem 7, A can be written as $A = LUM$, $L \in \mathcal{L}$, $U \in \mathcal{U}$, $M \in \mathcal{L}$ and in U and M all the diagonal entries are equal to e. Similarly to Theorem 7, we get $A = (L + \text{diag}(1-e, \ldots, 1-e)) (U + \text{diag}(1-e, \ldots, 1-e)) M$ and in $L + \text{diag}(1-e, \ldots, 1-e)$ and $U + \text{diag}(1-e, \ldots, 1-e)$ all the diagonal entries are equal to 1.

Let $A = (a_{ij}) \in M_n(R)$. If all $Ra_{ij}R$ are nil ideals of bounded index, by Corollary 8, we see that A is a product of at most three triangular matrices.

Recall that a matrix $A \in M_n(R)$ has the Drazin inverse in case there exist a positive integer m and a matrix $X \in M_n(R)$ such that $A^m = A^{m+1}X$, $AX = XA$ and $X = XAX$. Clearly, the solution X is unique, and we say that X is the Drazin inverse A^d of A.

Theorem 9. Let $A, B \in M_n(R)$ be bounded matrices over a regular ring R. Then there exists an invertible matrix U such that $(AB)^d = U(AB)^dU^{-1}$.

Proof. Assume that $AB = (c_{ij})$, $BA = (d_{ij}) \in M_n(R)$. Set $I = \sum_{1 \leq i,j \leq n} Re_{ij}R + \sum_{1 \leq i,j \leq n} Rd_{ij}R$. Since A and B are both bounded matrices, so are AB and BA. Similarly to Lemma 1, we show that all $Re_{ij}R$ and all $Rd_{ij}R$ are bounded ideal of R. It follows by [9, Corollary 7.8] that I is a bounded ideal of R. Using [11, Lemma 1.1], we have an idempotent $e \in I$ such that all $c_{ij} \in eRe$ and all $d_{ij} \in eRe$. Clearly, eRe is a regular ring of bounded index; hence, so is $M_n(eRe)$ by [9, Theorem 7.12]. It follows by [9, Theorem 7.15] that $M_n(eRe)$ is strongly π-regular. That is, $AB, BA \in M_n(eRe)$ have the Drazin inverses. In addition, $M_n(eRe)$ has stable range one by [1, Theorem 4]. Therefore there exists some $V \in GL_n(eRe)$ such that $(AB)^d = V(AB)^dV^{-1}$ by [7, Theorem 1.2]. Set $U = V + \text{diag}(1-e, \ldots, 1-e)$. As $AB, BA \in M_n(eRe)$, by the uniqueness of the Drazin inverses of AB and BA, we deduce that $(AB)^d, (BA)^d \in M_n(eRe)$. Therefore $(AB)^d = U(AB)^dU^{-1}$, as asserted.

\[\Box\]
Corollary 10. Let \(A, B \in M_n(R) \) be bounded matrices over a regular ring \(R \). Then the following are equivalent:

(1) \(AM_n(R) \cong BM_n(R) \).
(2) There exist some \(U, V \in GL_n(R) \) such that \(A = UBV \).

Proof. (2) \(\Rightarrow \) (1) is clear.

(1) \(\Rightarrow \) (2) Since \(R \) is a regular ring, so is \(M_n(R) \). Since \(A = (a_{ij}) \) is a bounded matrix, by Lemma 1, there exists a bounded ideal \(I \) of \(R \) such that \(A \in M_n(I) \). According to [11, Lemma 1.1], we have an idempotent \(e \in I \) such that \(A \in M_n(eRe) \). Clearly, \(eRe \) is a regular ring of bounded index, and so it is unit-regular. Using [9, Corollary 4.7], \(M_n(eRe) \) is unit-regular. Thus we have some \(C' \in GL_n(eRe) \) such that \(A = AC'A \). Set \(C = C' + \text{diag}(1 - e, \ldots, 1 - e) \). Then \(A = ACA \) with \(C \in GL_n(R) \). Similarly, we have some \(D \in GL_n(R) \) such that \(B = BDB \). Set \(E = AC \) and \(F = BD \). Then \(E, F \in M_n(R) \) are idempotent matrices and \(EM_n(R) \cong FM_n(R) \). Thus we get \(G \in EM_n(R)F \) and \(H \in FM_n(R)E \) such that \(E = GH \) and \(F = HG \). One easily checks that \(M_n(R)GM_n(R) \subseteq M_n(R)EM_n(R) \subseteq M_n(R)AM_n(R) \); hence, \(G \) is a bounded matrix. Likewise, \(H \) is a bounded index. By virtue of Theorem 9, we have \(U, V' \in GL_n(R) \) such that \(E^d = UFV' \). That is, \(E = UFV' \). Set \(V = D V' C^{-1} \). Therefore \(A = E C^{-1} = UFV' C^{-1} = UBDV'C^{-1} = UBV \), as asserted.

Corollary 11. Let \(A \) and \(B \) be \(n \times n \) matrices over a bounded ideal of a regular ring \(R \). Then the following are equivalent:

(1) \(AM_n(R) \cong BM_n(R) \).
(2) There exist some \(U, V \in GL_n(R) \) such that \(A = UBV \).

Proof. (2) \(\Rightarrow \) (1) is trivial.

(1) \(\Rightarrow \) (2) Suppose that \(A = (a_{ij}), B = (b_{ij}) \in M_n(I) \) and \(I \) is a bounded ideal of a regular ring \(R \). By [11, Lemma 1.1], there exists an idempotent \(e \in I \) such that all \(a_{ij}, b_{ij} \in eRe \); hence, \(A, B \in M_n(eRe) \). Clearly, \(eRe \) is a regular ring of bounded index, so is \(M_n(eRe) \). Thus we see that \(A \) and \(B \) are both bounded matrices over \(eRe \). It follows from \(AM_n(R) \cong BM_n(R) \) that \(AM_n(eRe) \cong BM_n(eRe) \). Using Corollary 10, we have \(U', V' \in GL_n(eRe) \) such that \(A = U' BV' \). Set \(U = U' + \text{diag}(1 - e, \ldots, 1 - e) \) and \(V = V' + \text{diag}(1 - e, \ldots, 1 - e) \). Then \(A = UBV \) and \(U, V \in GL_n(R) \), as asserted.
References

Shuqin Wang, Department of Mathematics, Shandong Economic University, Jinan 250014, P. R. China
E-mail: wsq482@sohu.com

Huanyin Chen, Department of Mathematics, Zhejiang Normal University, Jinhua 321004, P. R. China
E-mail: firend009@163.com