ON A COMPACT AND MINIMAL REAL HYPERSURFACE IN A QUATERNIONIC PROJECTIVE SPACE

YEONG-WU CHO AND IMSOON JEOG

Abstract. For a compact and orientable minimal real hypersurface \(M \) in \(QP^n \), we prove that if the minimum of the sectional curvatures of \(M \) is \(\frac{3}{4n-1} \), then \(M \) is isometric to the geodesic minimal hypersphere \(M^0_{0,n-1} \).

1. Introduction

Let \(QP^n \) be a quaternionic projective space of real dimension \(4n \), \(n \geq 2 \), with the Fubini-Study metric \(G \) of constant Q-sectional curvature 4 and let \(M \) be a connected \((4n-1)\)-dimensional real hypersurface of \(QP^n \).

Let \(N \) be a local unit normal vector field to \(M \). We denote by \(\{J_i\}_{i=1,2,3} \) is a local basis of the quaternionic Kähler structure of \(QP^n \). Then \(U_i = -J_i N, i = 1, 2, 3 \) are tangent to \(M \), which will be called structure vectors [10].

Now we put \(f_i(X) = g(X, U_i) \), for arbitrary \(X \in TM, i = 1, 2, 3 \), where \(TM \) is the tangent bundle of \(M \) and \(g \) denotes the Riemannian metric induced from the metric \(G \).

Now, let us consider the following conditions that the second fundamental tensor \(A \) of \(M \) in \(QP^n \) may satisfy

\[
(1.1) \quad (\nabla_X A)Y = \sum_{i=1}^{3} \{g(X, \phi_i Y) U_i - f_i(Y) \phi_i X\},
\]

\[
(1.2) \quad g((A \phi_i - \phi_i A)X, Y) = 0,
\]

for any \(i = 1, 2, 3 \) and any tangent vector fields \(X \) and \(Y \) to \(M \).

Received February 3, 2004.
2000 Mathematics Subject Classification: 53C25, 53C42.
Key words and phrases: minimal real hypersurface, quaternionic projective space, quaternionic space form.
Pak[10] investigated the above conditions and showed that they are equivalent to each other. Moreover he used the condition 1.1 to find a lower bound of \(|\nabla A|\) for real hypersurfaces in \(QP^n\). In fact, it was shown that \(|\nabla A|\geq 24(n-1)\) for any hypersurfaces and the equality holds if and only if the condition 1.1 holds. In this case it was also known that \(M\) is locally congruent to a real hypersurface of type \(A_1\) or type \(A_2\), which means a tube of radius \(r\) over \(QP^k\; (1 \leq k \leq n-1)\) in the notion of Berndt[1], and Martínez and Pérez[8].

Now the purpose of this paper is to give another new characterization of a minimal real hypersurface in \(QP^n\) by using Lemmas, to be stated in Section 3, which is a quaternionic version of result of Kon[5].

Now we prepare the following theorem [5] without proof in order to compare with our result:

Theorem 1.1. Let \(M\) be a compact orientable real minimal hypersurface of \(CP^n\). If the sectional curvature \(K\) of \(M\) satisfies \(K \geq 1/(2n-1)\), then \(M\) is the geodesic minimal hypersphere \(M^g_{0,n-1}\).

2. Preliminaries

A quaternionic Kähler manifold is a Riemannian manifold \((\tilde{M}, G)\) on which there exists a 3-dimensional vector bundle \(\tilde{V}\) of tensors of type \((1,1)\) with a local basis of almost Hermitian structures \(\{J_i\}_{i=1,2,3}\) satisfying the following conditions:

1. \(J_i^2 = -id, \ i = 1, 2, 3, \ J_iJ_j = -J_jJ_i = J_k,\) where \(id\) denotes the identity endomorphism on \(T\tilde{M}\) and \((i, j, k)\) is a cyclic permutation of \((1, 2, 3)\).

2. If \(\nabla\) denotes the Riemannian connection on \(\tilde{M}\), then there exist three local 1-forms \(P_i, i = 1, 2, 3\) on \(\tilde{M}\) such that

\[
\nabla_XJ_i = P_k(X)J_j - P_j(X)J_k
\]

for all vector field \(X\) on \(\tilde{M}\), where \((i, j, k)\) is a cyclic permutation of \((1, 2, 3)\).

Let \(Q(X)\) be the 4-dimensional subspace spanned by vectors \(X, J_1X, J_2X\) and \(J_3X\) for any \(X \in T_p\tilde{M}, p \in \tilde{M}\). If the sectional curvature of any section for \(Q(X)\) depends only on \(X\), we call it \(Q\)-sectional curvature. A quaternionic space form of \(Q\)-sectional curvature \(c\) is a connected quaternionic Kähler manifold with constant \(Q\)-sectional curvature \(c\).

The standard models of quaternionic space forms are the quaternionic projective space \(QP^n(c)(c > 0)\), the quaternionic space \(Q^n(c = 0)\) and the quaternionic hyperbolic space \(QH^n(c < 0)\) ([1]).
The curvature tensor \hat{R} of $QP^n(c), n \geq 2$, is given by

$$
\hat{R}(X, Y)Z = \frac{c}{4}[G(Y, Z)X - G(X, Z)Y + \sum_{k=1}^{3}\{G(J_kX, Z)J_kX - G(J_kX, Z)J_kY - 2G(J_kX, Y)J_kZ\}]
$$

for any vector fields X, Y and Z on $QP^n(c)([2])$.

From now on we denote by QP^n the quaternionic projective space of constant Q-sectional curvature 4.

Let M be a connected $(4n-1)$-dimensional real hypersurface of QP^n and let N be a local unit normal vector field to M. The Riemannian connection $\hat{\nabla}$ in QP^n and ∇ in M are related by the following formulas for arbitrary vector fields X and Y tangent to M:

\begin{align*}
(2.1) \quad & \hat{\nabla}_X Y = \nabla_X Y + g(AX, Y)N \\
(2.2) \quad & \hat{\nabla}_X N = -AX,
\end{align*}

where A is the second fundamental tensor of M in QP^n. The mean curvature h of M is defined by $h = \frac{1}{4n-1}TrA$.

If $h = 0$, then M is said to be minimal. Eigenvectors of the second fundamental tensor A are called principal curvature vectors and called the corresponding eigenvalues principal curvatures. We put

\begin{align*}
(2.3) \quad & J_iX = \phi_iX + f_i(X)N, \quad J_iN = -U_i, \quad i = 1, 2, 3 \\
\end{align*}

for any vector field X tangent to M, where ϕ_iX is the tangential parts of J_iX, ϕ_i are tensors of type (1,1) and f_i are 1-forms for $i = 1, 2, 3$.

As $J_i^2 = -id, i = 1, 2, 3$, id denoting the identity endomorphism on TQP^n, we get

\begin{align*}
(2.4) \quad & \phi_i^2X = -X + f_i(X)U_i, \quad f_i(\phi_iX) = 0, \quad \phi_iU_i = 0, \quad i = 1, 2, 3
\end{align*}

for any vector field X tangent to M. As $J_iJ_j = -J_jJ_i = J_k, (i, j, k)$ being a cyclic permutation of $(1, 2, 3)$, we obtain

\begin{align*}
(2.5) \quad & f_i(U_i) = 1, \quad f_i(U_j) = f_i(U_k) = 0, \\
(2.6) \quad & \phi_iX = \phi_j\phi_kX - f_k(X)U_j = -\phi_k\phi_jX + f_j(X)U_k
\end{align*}

and

\begin{align*}
(2.7) \quad & f_i(X) = f_j(\phi_kX) = -f_k(\phi_jX),
\end{align*}

for any vector field X tangent to M.

It is also easy to see that for any \(X,Y \) tangent to \(M \),
\[
(2.8) \quad g(\phi_i X, Y) + g(X, \phi_i Y) = 0, \quad g(\phi_i X, \phi_i Y) = g(X, Y) - f_i(X)f_i(Y)
\]
and
\[
(2.9) \quad \phi_i U_j = -\phi_j U_i = U_k,
\]
where \((i, j, k)\) is a cyclic permutation of \((1, 2, 3)\).

The covariant derivatives of \(J_i, i = 1, 2, 3 \), are given by
\[
(\tilde{\nabla}_X J_i = P_k(X)J_j - P_j(X)J_k)
\]
for any \(X \in TQP^n \), where \(P_i, i = 1, 2, 3 \), are local 1-forms on \(QP^n \).

Then from (2.1) and (2.2) we obtain
\[
(2.10) \quad \nabla_X U_i = -P_j(X)U_k + P_k(X)U_j + \phi_i AX
\]
and
\[
(2.11) \quad (\nabla_X \phi_i)Y = -P_j(X)\phi_k Y + P_k(X)\phi_j Y + f_i(Y)AX - g(AX, Y)U_i
\]
for any vector fields \(X,Y \) tangent to \(M \), where \((i, j, k)\) is a cyclic permutation of \((1, 2, 3)\).

Since \(\phi_i \) is skew-symmetric and \(A \) is symmetric, (2.10) implies that
\[
(2.12) \quad \text{div} U_i = \sum_{a=1}^{4n-1} g(\nabla_a U_i, e_a) = -P_j(U_k) + P_k(U_j),
\]
where \((i, j, k)\) is a cyclic permutation of \((1, 2, 3)\).

From the expression of the curvature tensor of \(QP^n, n \geq 2 \), the equations of Gauss and Codazzi are respectively given by
\[
(2.13) \quad R(X, Y)Z = g(Y, Z)X - g(X, Z)Y + \sum_{i=1}^{3} \{g(\phi_i Y, Z)\phi_i X \\
- g(\phi_i X, Z)\phi_i Y - 2g(\phi_i X, Y)\phi_i Z\} \\
+ g(AY, Z)AX - g(AX, Z)AY
\]
and
\[
(2.14) \quad (\nabla_X A)Y - (\nabla_Y A)X = \sum_{i=1}^{3} \{f_i(X)\phi_i Y - f_i(Y)\phi_i X \\
+ 2g(X, \phi_i Y)U_i\}
\]
for any \(X,Y,Z \) tangent to \(M \), where \(R \) denotes the curvature tensor of \(M \) ([8]).

We now put
\[
T := \nabla_{U_i}U_i + \nabla_{U_j}U_j + \nabla_{U_k}U_k + (\text{div} U_i)U_i + (\text{div} U_j)U_j + (\text{div} U_k)U_k
\]
and take an orthonormal basis \(\{ e_a \}_{a=1,\ldots,4n-1} \) of tangent vectors to \(M \) such that
\[
\begin{align*}
e_n &:= \phi_i e_1, \ldots, e_{2(n-1)} := \phi_i e_{n-1}, \\
e_{2n-1} &:= \phi_j e_1, \ldots, e_{3(n-1)} := \phi_j e_n, \\
e_{3n-2} &:= \phi_k e_1, \ldots, e_{4(n-1)} := \phi_k e_n, \\
e_{4n-3} &:= U_i, e_{4n-2} := U_j, e_{4n-1} := U_k.
\end{align*}
\]
Then it follows from (2.10) and (2.12) that
\[
T = \phi_i A U_i + \phi_j A U_j + \phi_k A U_k
\]
We note that \(T \) is a global vector field defined on \(M \). For later use we compute
\[
\text{div}(T) = \sum_{i=1}^{4n-1} g(\nabla e_a T, e_a).
\]
Differentiating (2.15) covariantly and using (2.4), (2.6), (2.9)–(2.11), and (2.14), we have
\[
\text{div}(T) = (\text{tr} A)(\sum_{i=1}^{3} g(A U_i, U_i)) - \sum_{i=1}^{3} g(A^2 U_i, U_i) + \sum_{i=1}^{3} \text{tr}(A \phi_i)^2 \\
- \sum_{i=1}^{n-1} \{ g((\nabla e_i A) \phi_i e_i - (\nabla \phi_i e_i A) e_i + (\nabla \phi_i e_i A) \phi_i e_i \\
- (\nabla \phi_i e_i A) \phi_j e_j, U_j) + g((\nabla e_i A) \phi_j e_j - (\nabla \phi_j e_j A) e_j + (\nabla \phi_j e_j A) \phi_j e_j \\
- (\nabla \phi_j e_j A) e_j + (\nabla \phi_j e_j A) \phi_k e_k) \\
- g((\nabla U_i A) U_k - (\nabla U_k A) U_i, U_j) - g((\nabla U_k A) U_i, U_j) \\
- (\nabla U_i A) U_k, U_j) - g((\nabla U_i A) U_j - (\nabla U_j A) U_i, U_k)\},
\]
or equivalently
\[
\text{div}(T) = (\text{tr} A)(\sum_{i=1}^{3} g(A U_i, U_i)) - \sum_{i=1}^{3} g(A^2 U_i, U_i) \\
+ \sum_{i=1}^{3} \text{tr}(A \phi_i)^2 + 12(n-1)
\]
Moreover we should explain model subspaces which will appear in our Theorem 3.3. We consider the Hopf fibration \(\tilde{\pi} : \)
\[
S^3 \longrightarrow S^{4n+3} \longrightarrow QP^n,
\]
where S^k denotes the Euclidean sphere of curvature 1. In S^{4n+3} we have the family of generalized Clifford surfaces whose spheres lie in quaternionic subspaces (cf. [7]):

$$M_{4p+3,4q+3} := S^{4p+3} \left(\sqrt{\frac{4p+3}{2(2n+1)}} \right) \times S^{4q+3} \left(\sqrt{\frac{4q+3}{2(2n+1)}} \right),$$

where $p + q = n - 1$. Then we have a fibration π:

$$S^3 \longrightarrow M_{4p+3,4q+3} \longrightarrow M^Q_{p,q},$$

compatible with $\tilde{\pi}$. In the special case $p = 0$, $M_{0,n-1}^Q$ is called the geodesic minimal hypersphere of QP^n, and is a homogeneous, positively curved manifold diffeomorphic to the sphere (for details, see [1, 7, 10]).

3. Main results

In order to prove our theorem, we need the following result.

Lemma 3.1. Let M be a minimal real hypersurface of QP^n. Then

$$g(\nabla^2 A, A) = \sum_{a,b} g((R(e_b,e_a)A)e_b, Ae_a) - 9TrA^2$$

$$+ \frac{3}{2} \sum_i \| [\phi_i, A] \|^2,$$

where $[\phi_i, A]$ denotes $\phi_i A - A\phi_i$.

Proof. Let $\{e_a\}$ be an orthonormal frame for M. Then (2.14) implies

$$\sum_a (\nabla_{e_a} A)e_a = 0.$$

Thus, from (2.10), (2.11), (2.14), and (3.2) we obtain

$$g(\nabla^2 A, A)$$

$$= \sum_{a,b} g((\nabla_{e_b} \nabla_{e_a} A)e_a, Ae_a)$$

$$= \sum_{a,b} g((R(e_b,e_a)A)e_b - \sum_i \{g(\nabla_{e_b} U_i, e_a)\phi_i e_b$$

$$+ f_i(e_a)(\nabla_{e_b} \phi_i)e_b - g(\nabla_{e_b} U_i, e_b)\phi_i e_a - f_i(e_b)(\nabla_{e_a} \phi_i)e_a$$

$$+ 2g(e_a, (\nabla_{e_b} \phi_i)e_b)U_i + 2g(e_a, \phi_i e_b)\nabla_{e_b} U_i, Ae_a)$$
= \sum_{a,b} g((R(e_b, e_a)A)e_b, Ae_a) - 3 \sum_i g(A^2 U_i, U_i) + 3 \sum_i \text{Tr}(A\phi_i)^2.

Since \(\text{Tr}(A\phi_i)^2 = -\text{Tr}A^2 + g(A^2 U_i, U_i) + \frac{1}{2}||\phi_i, A||^2\), we obtain

\begin{equation}
-3 \sum_i g(A^2 U_i, U_i) + 3 \sum_i \text{Tr}(A\phi_i)^2 = -9 \text{Tr}A^2 + \frac{3}{2} \sum_i ||\phi_i, A||^2.
\end{equation}

Substituting (3.4) into (3.3), we have our assertion. \(\square\)

Lemma 3.2. Let \(M\) be a compact and orientable minimal real hypersurface in \(Q^n\). If the minimum of the sectional curvatures of \(M\) is \(3/(4n-1)\), then \(\|\nabla A\|^2 = 24(n-1)\) and \(g((A\phi_i - \phi_i A)X, Y) = 0\), \(i = 1, 2, 3\).

Proof. We choose an orthonormal frame \(\{e_a\}\) of \(M\) such that \(Ae_a = \lambda_a e_a\), \(a = 1, 2, \cdots, 4n-1\).

We denote by \(K_{ab}\) the sectional curvature of \(M\) spanned by \(e_a\) and \(e_b\).

Then we have

\[
\sum_{a,b} g((R(e_a, e_b)A)e_a, Ae_b) = \sum_{a,b} \{g(R(e_a, e_b)Ae_a, Ae_b) - g(AR(e_a, e_b)e_a, Ae_b)\} = \frac{1}{2} \sum_{a,b} (\lambda_a - \lambda_b)^2 K_{ab} \geq \frac{3}{2(4n-1)} \sum_{a,b} (\lambda_a - \lambda_b)^2 = 3 \text{Tr}A^2.
\]

Consequently, we see

\begin{equation}
3 \text{Tr}A^2 - \sum_{a,b} g((R(e_a, e_b)A)e_a, Ae_b) \leq 0.
\end{equation}

Since we have \(\frac{1}{2} \Delta \text{Tr}A^2 = \|\nabla A\|^2 + g(\nabla^2 A, A)\), we obtain

\begin{equation}
\int_M \|\nabla A\|^2 * 1 = -\int_M g(\nabla^2 A, A) * 1.
\end{equation}
From Lemma 3.1, (3.6) and (2.16) we have

\[
0 \leq \int_M \left[\|\nabla A\|^2 - 24(n-1) + \frac{1}{2} \sum_i \|\phi_i, A\|^2 \right] \ast 1
\]

\[
= \int \left[9 \text{Tr} A^2 - \sum_{a,b} g((R(e_a,e_b)A)e_a, Ae_b) - 24(n-1) \right.
\]

\[
- \sum_i \|\phi_i, A\|^2 \left] \ast 1
\]

\[
= \int \left[3 \text{Tr} A^2 - \sum_{a,b} g((R(e_a,e_b)A)e_a, Ae_b) \right] \ast 1.
\]

From this and (3.5) we complete the proof. \(\square\)

Combining Lemma 3.2 and the result of Kwon and Pak[6], we see that \(M\) is \(M^Q_{p,q}\).

On the other hand if \(p, q \geq 1\), then the sectional curvature \(K\) of \(M^Q_{p,q}\) takes values 0 for some plane section [10]. But the sectional curvature \(K\) of \(M^Q_{0,n-1}\) satisfies \(K \geq 3/(4n-1)\).

Consequently, \(M\) is the geodesic minimal hypersphere \(M^Q_{0,n-1}\).

Theorem 3.3. Let \(M\) be a compact and orientable minimal real hypersurface in \(QP^n\). If the minimum of the sectional curvatures of \(M\) is \(3/(4n-1)\), then \(M\) is isometric to the geodesic minimal hypersphere \(M^Q_{0,n-1}\).

References

On a compact and minimal real hypersurface

Yeong-Wu Choe and Imsoon Jeong, Department of Mathematics, College of Sciences, Catholic University of Daegu, Gyeongsan 713-702, Korea
E-mail: ywchoe@cu.ac.kr
jis3557174@hanmail.net