ON REGULAR PREOPEN SETS AND \(p^\ast \)-CLOSED SPACES

Seong Hoon Cho and **Jae Keun Park**

Abstract. We introduce the notions of regular preopen sets and \(p^\ast \)-closed spaces and investigate some of these properties. Also we give a characterization of \(p \)-closed spaces.

AMS Mathematics Subject Classification : 54C08

Key words and phrases : Preopen set, regular preopen set, \(p^\ast \)-closed space.

1. Introduction

Mashhour et al[5] defined the notion of preopen set in a topological space and obtained its various properties. With the aid of preopen sets, they introduced and investigated modified continuous functions called precontinuous function and weak precontinuous function.

Dontchev et al[2] introduced and investigated \(p \)-closed spaces. Our primary goal is to introduce and investigate regular preopen sets and a new class of topological spaces called \(p^\ast \)-closed spaces and investigate \(p \)-closed spaces.

2. Preliminaries

Throughout the present paper, \(X \) and \(Y \) denote topological spaces. Let \(A \subset X \). We denote the interior and the closure of \(A \) by \(\text{int}(A) \) and \(cl(A) \), respectively. A subset \(A \) of \(X \) is said to be preopen[5] if \(A \subset \text{cl}(\text{int}(A)) \). The complement of a preopen set is called preclosed. The intersection of all preclosed sets containing \(A \) is called the preclosure of \(A \) and is denoted by \(pcl(A) \). The preinterior of \(A \) is defined by the union of all preopen sets contained in \(A \) and is denoted by \(pint(A) \). It is clear that \(A \) is preopen if and only if \(A = pint(A) \) and \(A \) is preclosed if and only if \(A = pcl(A) \).
From definitions, we can see that the following inclusion relations hold:

\[\text{int}(A) \subset \text{pint}(A) \subset A \subset \text{pcl}(A) \subset \text{cl}(A). \]

Therefore, if \(A \) is closed (resp. open), then \(A \) is preclosed (resp. preopen).

It easy to see that for a subset \(A \) of \(X \), \(\text{pcl}(X - A) = X - \text{pint}(A) \) and \(\text{pint}(X - A) = X - \text{pcl}(A) \).

A subset \(A \) of \(X \) is said to be \(\alpha \)-open [6] if \(A \subset \text{int} (\text{cl}(\text{int}(A))) \). The complement of an \(\alpha \)-open set is called \(\alpha \)-closed. We can see that every \(\alpha \)-open (resp. \(\alpha \)-closed) set is a preopen (resp. preclosed) set.

3. Regular preopen sets

A subset \(A \) of \(X \) is said to be regular preopen (resp. regular preclosed) if \(A = \text{pint}(\text{pcl}(A)) \) (resp. \(A = \text{pcl}(\text{pint}(A)) \)).

It is clear that a regular preopen set is preopen.

A space \(X \) is called extremally predisconnected if for all preopen subset \(U \) of \(X \), \(\text{pcl}(U) \) is a preopen subset of \(X \).

Proposition 3.1. If \(A \) is a preclopen set in \(X \), then \(A \) is a regular preopen set. Moreover, if \(X \) is extremally predisconnected then the converse holds.

Proof. If \(A \) is a preclopen set, then \(A = \text{pcl}(A) \) and \(A = \text{pint}(A) \), and so we have \(A = \text{pint}(\text{pcl}(A)) \). Hence \(A \) is regular preopen.

Suppose that \(X \) is an extremally predisconnected space and \(A \) is a regular preopen set in \(X \). Then \(A \) is preopen and so \(\text{pcl}(A) \) is a preopen set. Hence \(A = \text{pint}(\text{pcl}(A)) = \text{pcl}(A) \) and hence \(A \) is a preclosed set. \(\square \)

Example 3.1. Let \(X = \{a, b, c\} \) and \(\tau = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\} \). Then \((X, \tau)\) is not extremally predisconnected, and \(\{a\} \) is a regular preopen set but not preclopen set.

Theorem 3.2. For a subset \(A \) of \(X \), consider the following statements.

1. \(A \) is preclopen.
2. \(A = \text{pcl}(\text{pint}(A)) \).
3. \(X - A \) is regular preopen.
4. \(A \) is regular preopen.

Then we have that \((1) \implies (2) \implies (3) \). Moreover, if \(X \) is an extremally predisconnected space, then \((4) \implies (1) \) and \((3) \implies (4) \), and hence the above statements are equivalent.
Proof. The implication (1) ⇒ (2) is obvious.

(2) ⇒ (3). Let \(A = pcl(pint(A)) \). Then \(X - A = X - pcl(pint(A)) = pint(X - pint(A)) = pint(pcl(X - A)) \), and hence \(X - A \) is a regular preopen set.

Suppose \(X \) is an extremally predisconnected space.

(3) ⇒ (4). From Proposition 3.1, \(X - A \) is a preopen and preclosed set, and hence \(A \) is a preopen and preclosed set. Thus \(A = pint(pcl(A)) \) and \(A \) is a regular preopen set.

(4) ⇒ (1). It follows from Proposition 3.1. □

Theorem 3.3. Let \(A \) be a subset of a space \(X \) and let \(cl(A) \) (resp. \(pcl(A) \)) be a regular preopen set. Then \(A \) is a preopen set in \(X \). Moreover, if \(X \) is extremally predisconnected then the converse holds.

Proof. Suppose that \(cl(A) \) is a regular preopen set. Then we have

\[
A \subseteq cl(A) \subseteq int(cl(cl(A))) = int(cl(A)).
\]

Hence we have \(A \) is a preopen set.

Assume that \(X \) is extremally predisconnected and \(A \) is a preopen set. Then \(cl(A) \) is a preopen set, and hence a preclopen set. Thus \(cl(A) \) is a regular preopen set. □

Corollary 3.4. Let \(X \) be an extremally predisconnected space. Then for each subset \(A \) of \(X \), the sets \(cl(int(A)) \), \(cl(pint(A)) \), \(pcl(int(A)) \) and \(pcl(pint(A)) \) are regular preopen sets.

Proposition 3.5. If a subset \(A \) of \(X \) is \(\alpha \)-open and \(\alpha \)-closed, then \(A \) is a regular preopen set.

Proof. Let \(A \) be an \(\alpha \)-open and \(\alpha \)-closed set. Then \(A \) is a preopen and preclosed set, and hence \(A \) is a regular preopen set. □

Proposition 3.6. If a subset \(A \) of \(X \) is \(\alpha \)-open and regular preopen, then \(A = int(cl(int(A))) \).

Proof. Let \(A \) be an \(\alpha \)-open and regular preopen set. Then \(A \subseteq int(cl(int(A))) \) and

\[
A = pint(pcl(A)) \supset pint(cl(int(pcl(A)))) \supset pint(cl(int(A))) \supset int(cl(int(A))).
\]

□
A point x of X is called a \textit{pre-θ-cluster point}\cite{6} of a subset A of X if $\text{pcl}(U) \cap A \neq \phi$ for every preopen set U containing x.

The set of all pre-θ-cluster points of A is called the \textit{pre-θ-closure}\cite{6} of A and is denoted by $\text{pcl}_\theta(A)$.

A subset A of X is said to be \textit{pre-θ-closed}\cite{6} if $\text{pcl}_\theta(A) = A$. The complement of a pre-θ-closed set is called \textit{pre-θ-open}. Of course, a pre-θ-closed(resp. pre-θ-open) set is a preclosed(resp. preopen) set.

Proposition 3.7. Let A and B be subsets of a space X. Then the following properties hold:

(1) if $A \subset B$, then $\text{pcl}_\theta(A) \subset \text{pcl}_\theta(B)$,

(2) if A_α is pre-θ-closed in X for each $\alpha \in \Delta$, then $\bigcap_{\alpha \in \Delta} A_\alpha$ is pre-θ-closed in X.

\textbf{Proof.} The proof of (1) is obvious.

(2) Let A_α be pre-θ-closed in X for each $\alpha \in \Delta$. Then $A_\alpha = \text{pcl}_\theta(A_\alpha)$ for each $\alpha \in \Delta$. Thus we have

$$\text{pcl}_\theta\left(\bigcap_{\alpha \in \Delta} A_\alpha\right) \subset \bigcap_{\alpha \in \Delta} \text{pcl}_\theta(A_\alpha) = \bigcap_{\alpha \in \Delta} A_\alpha \subset \text{pcl}_\theta\left(\bigcap_{\alpha \in \Delta} A_\alpha\right).$$

Therefore, we have $\text{pcl}_\theta\left(\bigcap_{\alpha \in \Delta} A_\alpha\right) = \bigcap_{\alpha \in \Delta} A_\alpha$ and hence $\bigcap_{\alpha \in \Delta} A_\alpha$ is pre-θ-closed. \qed

Theorem 3.8. For any subset A of an extremally predisconnected space X, the following hold:

$$\text{pcl}_\theta(A) = \bigcap\left\{V : A \subset V \text{ and } V \text{ is pre-θ-closed}\right\}$$

$$= \bigcap\left\{V : A \subset V \text{ and } V \text{ is regular preopen}\right\}$$

\textbf{Proof.} We prove only the first equation since the other is similarly proved.

First, let $x \notin \text{pcl}_\theta(A)$. Then there is a preopen set V with $x \in V$ such that $\text{pcl}(V) \cap A = \phi$. From Theorem 3.3, $X - \text{pcl}(V)$ is regular preopen, and hence
X − pcl(V) is a pre-θ-closed set containing A and x ̸∈ X − pclθ(V). Thus we have
\[x ̸∈ \cap\{V : A ⊂ V \text{ and } V \text{ is pre-θ-closed}\}. \]
Conversely, suppose that \(x ̸∈ \cap\{V : A ⊂ V \text{ and } V \text{ is pre-θ-closed}\} \). Then there exists a pre-θ-closed set \(V \) such that \(A ⊂ V \) and \(x ̸∈ V \), and so there exists a preopen set \(U \) with \(x ∈ U \) such that \(U ⊂ pcl(U) ⊂ X − V \). Thus we have
\[pcl(U) ∩ A ⊂ pcl(U) ∩ V = φ, \]
and hence \(x ̸∈ pclθ(A) \). □

Theorem 3.9. For any subset \(A \) of an extremally predis-connected space \(X \), the followings hold:
1. \(x ∈ pclθ(A) \) if and only if \(V ∩ A ≠ φ \) for each regular preopen set \(V \) with \(x ∈ V \);
2. \(A \) is pre-θ-open if and only if for each \(x ∈ A \) there exists a regular preopen set \(V \) with \(x ∈ V \) such that \(V ⊂ A \);
3. \(A \) is a regular preopen set if and only if \(A \) is pre-θ-clopen.

Proof. From theorem 3.2 and 3.3, (1) and (2) are obvious.

(3) Let \(A \) be a regular preopen set. Then \(A \) is a preopen set and so \(A = pcl(A) = pclθ(A) \), and hence \(A \) is pre-θ-closed. Since \(X − A \) is a regular preopen set, by the argument above, \(X − A \) is pre-θ-closed and \(A \) is pre-θ-open. The converse is obvious. □

It is obvious that regular preopen ⇒ pre-θ-open ⇒ preopen. But the converses are not necessarily true as the following examples show.

Example 3.2. Let \(X = \{a, b, c\} \) and \(τ = \{φ, X, \{a, b\}\} \). Then the subset \(\{a, b\} \) is a pre-θ-open set which is not regular preopen.

Example 3.3. Let \(X = \{a, b, c\} \) and \(τ = \{φ, X, \{a, b\}\} \). Then the subset \(\{a\} \) is a preopen set which is not pre-θ-open.

4. \(p \)-closed spaces and \(p^* \)-closed spaces

A filterbase \(F \) in \(X \) \(pθ^* \)-converges (resp. \(rp \)-converges) to \(x_0 ∈ X \) if for each preopen (rep. regular preopen) set \(A \) with \(x_0 ∈ A \), there exists \(F ∈ F \) such that \(F ⊂ pcl(A) \) (resp. \(F ⊂ A \)).
A filterbase \mathcal{F} in X $p\theta^*$-accumulates (resp. rp-accumulates) to $x_0 \in X$ if for each preopen (resp. regular preopen) set A with $x_0 \in A$ and each $F \in \mathcal{F}$, $F \cap \text{pcl}(A) \neq \emptyset$ (resp. $F \cap A \neq \emptyset$).

The following theorems are easy consequences of the above definitions.

Theorem 4.1. If a filterbase \mathcal{F} in X $p\theta^*$-converges (resp. rp-converges) to $x_0 \in X$, then \mathcal{F} $p\theta^*$-accumulates (resp. rp-accumulates) to x_0.

Theorem 4.2. If \mathcal{F}_1 and \mathcal{F}_2 are filterbases in X such that \mathcal{F}_2 subordinate to \mathcal{F}_1 and \mathcal{F}_2 $p\theta^*$-accumulates (resp. rp-accumulates) to x_0, then \mathcal{F}_1 $p\theta^*$-accumulates (resp. rp-accumulates) to x_0.

Theorem 4.3. If \mathcal{F} is a maximal filterbase in X, then \mathcal{F} $p\theta^*$-accumulates (resp. rp-accumulates) to x_0 if and only if \mathcal{F} $p\theta^*$-converges (resp. rp-converges) to x_0.

Theorem 4.4. Let X be an extremally predisconnected space. Then we have that a filterbase \mathcal{F} in X $p\theta^*$-converges to x_0 if and only if \mathcal{F} rp-converges to x_0.

Theorem 4.5. Let X be an extremally predisconnected space. Then a filterbase \mathcal{F} in X $p\theta^*$-accumulates to x_0 if and only if \mathcal{F} rp-accumulates to x_0.

A space X is said to be p-closed [2] if every cover of X by preopen sets has a finite subcover whose preclosures cover X.

A space X is said to be p^*-closed if every cover of X by regular preopen sets has a finite subcover.

From theorem 3.1 and 3.3, we have the following result.

Proposition 4.6. An extremally predisconnected space X is p-closed if and only if it is p^*-closed.

Theorem 4.7. For a space X, the following are equivalent.

1. X is p-closed.

2. For each family $\{F_\alpha : \alpha \in \Delta\}$ of preclosed subset of X such that $\bigcap_{\alpha \in \Delta} F_\alpha = \emptyset$, there exists a finite subset Δ_0 of Δ such that $\bigcap_{\alpha \in \Delta_0} \text{pint}(F\alpha) = \emptyset$.

3. For each family $\{F_\alpha : \alpha \in \Delta\}$ of preclosed subsets of X, if $\bigcap_{\alpha \in \Delta_0} \text{pint}(F\alpha) \neq \emptyset$ for every finite subset Δ_0 of Δ, then $\bigcap_{\alpha \in \Delta} F\alpha \neq \emptyset$.

(4) Every filterbase \(\mathcal{F} \) in \(X \) \(\phi^* \)-accumulates to \(x_0 \in X \).

(5) Every maximal filterbase \(\mathcal{F} \) in \(X \) \(\phi^* \)-converges to \(x_0 \in X \).

Proof. The equivalence \((2) \iff (3)\) is obvious.

\((2) \Rightarrow (1)\). Let \(\{ A_\alpha : \alpha \in \Delta \} \) be a family of preopen subsets of \(X \) such that \(X = \bigcup_{\alpha \in \Delta} A_\alpha \). Then each \(X - A_\alpha \) is a preclosed subset of \(X \) and \(\bigcap_{\alpha \in \Delta} (X - A_\alpha) = \phi \), and so there exists a finite subset \(\Delta_0 \) of \(\Delta \) such that \(\bigcap_{\alpha \in \Delta_0} \text{pint}(X - A_\alpha) = \phi \), and hence

\[
X = \bigcup_{\alpha \in \Delta_0} \left(X - \text{pint}(X - A_\alpha) \right) = \bigcup_{\alpha \in \Delta_0} \text{pcl}(A_\alpha).
\]

\((4) \Rightarrow (2)\). Let \(\{ A_\alpha : \alpha \in \Delta \} \) be a family of preclosed subsets of \(X \) such that \(\bigcap_{\alpha \in \Delta} A_\alpha = \phi \). Suppose that for every finite subfamily \(\{ A_{\alpha_i} : i = 1, 2, \ldots, n \} \),

\[
\bigcap_{i=1}^{n} \text{pint}(A_{\alpha_i}) \neq \phi.
\]

Then \(\bigcap_{i=1}^{n} A_{\alpha_i} \neq \phi \) and

\[
\mathcal{F} = \left\{ \bigcap_{i=1}^{n} A_{\alpha_i} : n \in N, \alpha_i \in \Delta \right\}
\]

forms a filterbase in \(X \). By (4), \(\mathcal{F} \) \(\phi^* \)-accumulates to some \(x_0 \in X \). Thus for every preopen set \(A \) with \(x_0 \in A \) and every \(F \in \mathcal{F} \), \(F \cap \text{pcl}(A) \neq \phi \). Since \(\bigcap_{F \in \mathcal{F}} F = \phi \), there exists a \(F \in \mathcal{F} \) such that \(x_0 \notin F \), and so there exists \(\alpha_0 \in \Delta \) such that \(x_0 \notin A_{\alpha_0} \) and hence \(x_0 \in X - A_{\alpha_0} \) and \(X - A_{\alpha_0} \) is a preopen set. Thus \(x_0 \notin \text{pint}(A_{\alpha_0}) \) and \(x_0 \in X - \text{pint}(A_{\alpha_0}) \), and hence

\[
F_0 \cap \left(X - \text{pint}(A_{\alpha_0}) \right) = F_0 \cap \text{pcl}(X - A_{\alpha_0}) = \phi,
\]

which is a contradiction.

\((5) \Rightarrow (4)\). Let \(\mathcal{F} \) be a filterbase in \(X \). Then there exists a maximal filterbase \(\mathcal{G} \) in \(X \) such that \(\mathcal{G} \) subordinate to \(\mathcal{F} \). Since \(\mathcal{G} \) \(\phi^* \)-converges to \(x_0 \), \(\mathcal{F} \) \(\phi^* \)-accumulate to \(x_0 \) by theorem 4.2 and 4.3.

\((1) \Rightarrow (5)\). Suppose that \(\mathcal{F} = \{ F_\alpha : \alpha \in \Delta \} \) is a maximal filterbase in \(X \) which does not \(\phi^* \)-converge to any point in \(X \). From theorem 4.3, \(\mathcal{F} \) does not \(\phi^* \)-accumulate to any point in \(X \). Thus for every \(x \in X \), there exist preopen \(A_x \) containing \(x \) and \(F_{\alpha_x} \in \mathcal{F} \) such that \(F_{\alpha_x} \cap \text{pcl}(A_x) = \phi \). Since \(\{ A_x : x \in X \} \) is a preopen cover of \(X \), there exists a finite subfamily \(\{ A_{x_i} : i = 1, 2, \ldots, n \} \) such that \(X = \bigcup_{i=1}^{n} \text{pcl}(A_{x_i}) \). Because \(\mathcal{F} \) is filterbase in \(X \), there exists \(F_0 \in \mathcal{F} \)
such that $F_0 \subset \bigcap_{i=1}^{n} F_{a_{x_i}}$, and hence $F_0 \bigcap pcl(A_{x_i}) = \phi$ for all $i = 1, 2, \cdots, n$.

Hence we have that

$$\phi = F_0 \bigcap \left(\bigcup_{i=1}^{n} pcl(A_{x_i}) \right) = F_0 \cap X,$$

and hence $F_0 = \phi$. This is a contradiction. □

The proof of the following result is similar to that of theorem 4.7 and is

omitted.

Theorem 4.8. For a space X, the following are equivalent.

(1) X is p^*-closed.

(2) For each family of regular preclosed subsets of X such that $\bigcap_{\alpha \in \Delta} A_\alpha = \phi$, there exists a finite subset Δ_0 of Δ such that $\bigcap_{\alpha \in \Delta_0} A_\alpha = \phi$.

(3) For each family $\{A_\alpha : \alpha \in \Delta\}$ of regular preclosed subsets of X, if $\bigcap_{\alpha \in \Delta} A_\alpha \neq \phi$ for every finite subset Δ_0 of Δ, then $\bigcap_{\alpha \in \Delta} A_\alpha \neq \phi$.

(4) Every filterbase F in X rp-accumulates to $x_0 \in X$.

(5) Every maximal filterbase F in X rp-converges to $x_0 \in X$.

From Proposition 4.6, we get the following corollary.

Corollary 4.9. If X is an extremally predisconnected space, then the statements in theorem 4.8 and 4.9 are equivalent.

A net $(x_i)_{i \in D}$ in a space X is said to be $p\theta^*$-converges[1](resp. rp-converges) to $x \in X$ if for each preopen set(resp. regular preopen set) U with $x \in U$, there exists i_0 such that $x_i \in pcl(U)$ (resp. $x_i \in U$) for all $i \geq i_0$, where D is a directed set.

A net $(x_i)_{i \in D}$ in a space X is said to be $p\theta^*$-accumulates (resp. rp-accumulates) to $x \in X$ if for each preopen set (resp. regular preopen set) U with $x \in U$ and each i, $x_i \in pcl(U)$ (resp. $x_i \in U$), where D is a directed set.

It is routine to prove the following propositions.

Proposition 4.10. Let $(x_i)_{i \in D}$ be a net in X. For the filterbase $F((x_i)_{i \in D}) = \{\{x_i : i \geq j\} : j \in D\}$ in X,
(1) $F \left((x_i)_{i \in D} \right)$ p^θ-converges (resp. rp-converges) to x if and only if $(x_i)_{i \in D}$ p^θ-converges (resp. rp-converges) to x.

(2) $F \left((x_i)_{i \in D} \right)$ p^θ-accumulates (resp. rp-accumulates) to x if and only if $(x_i)_{i \in D} p^\theta$-accumulates (resp. rp-accumulates) to x.

Proposition 4.11. Every filter base F in X determines a net $(x_i)_{i \in D}$ in X such that

(1) F p^θ-converges (resp. rp-converges) to x if and only if $(x_i)_{i \in D}$ p^θ-converges (resp. rp-converges) to x.

(2) F p^θ-accumulates (resp. rp-accumulates) to x if and only if $(x_i)_{i \in D} p^\theta$-accumulates (resp. rp-accumulates) to x.

From Proposition 4.10 and 4.11, filterbases and nets are equivalent in the sense of p^θ-converges (resp. rp-converges) and p^θ-accumulates (resp. rp-accumulates). Therefore, we have the following results.

Theorem 4.12. For a space X, the following are equivalent.

(1) X is p-closed.

(2) Each net $(x_i)_{i \in D}$ in X has a p^θ-accumulation point.

(3) Each universal net in X p^θ-converges.

Theorem 4.13. For a space X, the following are equivalent.

(1) X is p^*-closed.

(2) Each net $(x_i)_{i \in D}$ in X has an rp-accumulation point.

(3) Each universal net rp-converges.

A space X is called p-regular [3] if for each open set G in X with $x \in G$, there exists a preopen set U in X such that $x \in U \subset pcl(U) \subset G$.

Theorem 4.14. If X is p-regular and p-closed, then X is compact.

Proof. Suppose X is p-regular and p-closed, and let $\{G_\alpha : \alpha \in \Delta\}$ be an open cover of X. Then for each $x \in X$, there exists an $\alpha_x \in \Delta$ such that $x \in G_{\alpha_x}$. So there exists a preopen set U_x in X such that

$$x \in U_x \subset pcl(U_x) \subset G_{\alpha_x},$$

and so $X = \bigcup U_x$. Since X is p-closed, there exists a finitely many x_k’s such that

$$X = \bigcup pcl(U_{x_k}) \subset \bigcup G_{\alpha_{x_k}},$$
and hence X is compact. □

Corollary 4.15. Let X be an extremally predisconnected and p-regular space. If X is a p^*-closed space, then X is compact.

A function $f : X \rightarrow Y$ is said to be r-precontinuous (resp. strongly θ-precontinuous [7]) if for each $x \in X$ and each open set V with $f(x) \in V$, there exists a regular preopen (resp. preopen) set U with $x \in U$ such that $f(U) \subset V$ (resp. $f(pcl(U)) \subset V$).

A function $f : X \rightarrow Y$ is said to be p-continuous if for each $x \in X$ and each preopen set V with $f(x) \in V$, there exists an open set U with $x \in U$ such that $f(U) \subset pcl(V)$.

Theorem 4.16. Let X be an extremally predisconnected space. Then $f : X \rightarrow Y$ is r-precontinuous if and only if f is strongly θ-precontinuous.

Proof. It follows from theorem 3.2. □

Theorem 4.17. If $f : X \rightarrow Y$ is a strongly θ-precontinuous surjection and X is p-closed, then Y is compact.

Proof. Let $\{V_\alpha : \alpha \in \Delta\}$ be an open cover of Y. Then for each $x \in X$, there exists $\alpha_x \in \Delta$ such that $f(x) \in V_{\alpha_x}$, and so there exists a preopen set U_x with $x \in U_x$ such that $f\left(pcl(U_x)\right) \subset V_{\alpha_x}$. So $\{U_x : x \in X\}$ is a preopen cover of X, and hence there exists finitely many x_i's such that $X = \bigcup pcl(U_{x_i})$ and so

$$Y = f\left(\bigcup pcl(U_{x_i})\right) \supseteq \bigcup f\left(pcl(U_{x_i})\right) \subset \bigcup V_{\alpha_{x_i}},$$

and hence Y is compact. □

The following theorems can be proved similarly.

Theorem 4.18. If $f : X \rightarrow Y$ is a r-precontinuous surjection and X is p^*-closed, then Y is compact.

Theorem 4.19. If $f : X \rightarrow Y$ is a p-continuous surjection and X is compact, then Y is p^*-closed.
A space X is said to be $\text{pre-}T_2[8]$ if for each pair of distinct points x and y in X, there exist preopen sets U with $x \in U$ and V with $y \in V$ such that $U \cap V = \phi$.

Lemma 4.20. A space X is $\text{pre-}T_2$ if and only if for each pair of distinct points x and y in X, there exists a preopen set U with $x \in U$ such that $y \notin \text{pcl}(U)$.

Proposition 4.21. Let X be an extremally predisconnected and p-closed space, and let Y be a regular preclosed subset of X. Then Y is p-closed.

Proof. Let $\{U_i : i \in \Delta\}$ be a family of preopen susets of X such that $Y \subset \bigcup_{i \in \Delta} U_i$. Then

$$X = \left(\bigcup_{i \in \Delta} U_i \right) \bigcup (X - Y)$$

and $X - Y$ is a preopen set, and so there exists a finite subset Δ_0 of Δ such that

$$X = \left(\bigcup_{i \in \Delta_0} \text{pcl}(U_i) \right) \bigcup \text{pcl}(X - Y).$$

From theorem 3.2,

$$X = \left(\bigcup_{i \in \Delta_0} \text{pcl}(U_i) \right) \bigcup (X - Y)$$

and so $Y \subset \bigcup_{i \in \Delta_0} \text{pcl}(U_i)$, and hence Y is p-closed. □

A function $f : X \to Y$ has a p-closed graph if for each $(x, y) \notin G(f)$, there exist open set U with $x \in U$ and preopen set V with $y \in V$ such that

$$\left(U \times \text{pcl}(V) \right) \cap G(f) = \phi.$$

Theorem 4.22. Let X be a space, and let Y be a $\text{pre-}T_2$, p-closed and extremally predisconnected space. If $f : X \to Y$ has a p-closed graph, then f is p-continuous.

Proof. Let $x \in X$ and V be a preopen set with $f(x) \in V$, and let $y \in Y - \text{pcl}(V)$. Then $(x, y) \notin G(f)$, and so there exist open set $U_y(x)$ with $x \in U_y(x)$ and preopen set $V(y)$ with $y \in V(y)$ such that

$$\left(U_y(x) \times \text{pcl}(V(y)) \right) \cap G(f) = \phi.$$
Since Y is pre-T_2, we can choose $V(y)$ such that $f(x) \notin pcl(V(y))$. Then the family $\{V(y) : y \in Y - pcl(V)\}$ is a preopen cover of the regular preclosed set $Y - pcl(V)$. From proposition 4.20, there is finitely many y_i’s such that
\[Y - pcl(V) \subset \bigcup_{i=1}^{n} pcl(V(y_i)). \]

Let $U = \bigcap_{i=1}^{n} U_{y_i}(x)$. Then U is an open set with $x \in U$ and contains no point $u \in U$ such that
\[f(u) \in \bigcup_{i=1}^{n} pcl(V(y_i)). \]

Thus $f(U) \subset pcl(V)$ and hence f is p-continuous.

REFERENCES

Seong Hoon Cho received his BS from Mokwon university and Ph.D at Myngji university. From 1995, he has been working at Hanseo university. He interests on analysis, fuzzy theory and topology.

Department of Mathematics, Hanseo University, Seosan, 356-706, Korea
On regular preopen sets and p^*-closed spaces

Jae Keun Park received his BS and MS from Seoul National大学 and PhD at Chungang University. Since 1997 he has been working at the Faculty of Department of Mathematics at Korea Air Force Academy and Hanseo University. He interests on analysis, fuzzy theory and topology.

Department of Mathematics, Hanseo University, Seosan, 356-706, Korea

e-mail: jkpark@hanseo.ac.kr