ON A CONFORMAL KILLING VECTOR FIELD IN
A COMPACT ALMOST KÄHLERIAN MANIFOLD

KAZUHIKO TAKANO AND JAE-BOK JUN

Abstract. In this paper, we will prove that in a compact almost Kählerian manifold M^n, any conformal Killing vector field is Killing if $n \geq 4$.

1. Introduction

Let M be an n-dimensional Riemannian manifold. We denote respectively by g_{ij} and ∇_j the metric and the covariant derivative in terms of local coordinates $\{x^i\}$, where Latin indices run over the range $\{1, 2, \cdots, n\}$. A conformal Killing vector field u^i in M is given by

\[\nabla_k u_j + \nabla_j u_k = 2\rho g_{kj}, \]

where $u_i = g_{ir}u^r$ and ρ is a scalar function, called the associated scalar of w'. If ρ vanishes identically, then the vector field is called Killing.

Also, a conformal Killing vector field is Killing in a compact Kählerian manifold [3]. In a Sasakian manifold, any conformal Killing vector field is uniquely decomposed into the summation of Killing and closed conformal Killing [2].

In [1], Y. Ogawa has studied differential operators in an almost Kählerian manifold. Using the operators of the almost Kählerian manifold, we prove the following theorem:

THEOREM. In a compact almost Kählerian manifold M^n, any conformal Killing vector field ($n \geq 4$) is Killing.

Received December 20, 2002.
2000 Mathematics Subject Classification: 53C55, 57R25.
Key words and phrases: almost Kählerian manifold, conformal Killing vector field.
The second author was partially supported by KMU 2004.
2. Preliminaries

We represent tensors by their components with respect to the natural basis and use the summation convention. For a differential \(p \)-form \(u \), the coefficients of its exterior differential \(du \) and the exterior codifferential \(\delta u \) are given by

\[
(du)_{i_1 \ldots i_{p+1}} = \sum_{a=1}^{p+1} (-1)^{a+1} \nabla_{i_a} u_{i_1 \ldots \widehat{i_a} \ldots i_{p+1}} \quad \text{and} \quad (\delta u)_{i_2 \ldots i_p} = -\nabla^h u_{h i_2 \ldots i_p},
\]

where \(\nabla^h = g^{h j} \nabla_j \) and \(\widehat{i_a} \) means \(i_a \) to be deleted.

We consider an almost Hermitian manifold \(M^n (n = 2m) \) with positive definite metric \(g_{j i} \) and almost complex structure \(\phi_{j i} \). An almost Hermitian manifold is called almost Kählerian if the 2-form \(\phi_{j i} \) is closed. We want to recall some operators for differential forms in the almost Kählerian manifold. Denote by \(\mathcal{F}^p \) the set of all \(p \)-forms. The operators \(\Gamma, \gamma, C, c, \varpi, \) and \(\Phi \) are defined respectively by

\[
(\Gamma u)_{i_1 \ldots i_p} = \sum_{a=0}^{p} (-1)^a \phi_{i_a}^{r} \nabla_r u_{i_0 \ldots \widehat{i_a} \ldots i_p},
\]

\[
(\gamma u)_{i_1 \ldots i_p} = \sum_{a \neq b} (-1)^a \nabla_{i_a} \phi_{i_b}^{r} \cdot u_{i_0 \ldots \widehat{i_a} \ldots \widehat{i_b} \ldots i_p},
\]

\[
(Cu)_{i_2 \ldots i_p} = \phi^r s \nabla_r u_{s i_2 \ldots i_p},
\]

\[
(cu)_{i_2 \ldots i_p} = \sum_{a=2}^{p} \nabla^r \phi_{i_a}^{s} \cdot u_{r i_2 \ldots i_p},
\]

\[
(\varpi u)_{i_2 \ldots i_p} = \sum_{a=2}^{p} \phi_{i_a}^{r} \cdot u_{r i_2 \ldots i_p},
\]

\[
(\Phi u)_{i_1 \ldots i_p} = \sum_{a=1}^{p} \phi_{i_a}^{r} u_{i_1 \ldots r \ldots i_p}
\]

for any \(p \)-form \(u \), where we put \(\phi^{ji} = g^{j i} \phi_{ji} \). For any 0-form \(u_0 \) and 1-form \(u_1 \), we define \(\gamma u_0 = Cu_0 = cu_0 = \varpi u_0 = \Phi u_0 = 0 \) and \(cu_1 = \varpi u_1 = 0 \). In the almost Kählerian manifold, we know \(*\Gamma = -C, *\gamma = -c \) and \(*\Phi = (-1)^p \Phi \) for any \(p \)-form, where \(* \) means the dual mapping [1].

We denote by \(L \) (resp. \(\Lambda \)) the exterior (resp. interior) product with the associated 2-form \(\phi \), then the operators \(L : \mathcal{F}^p \to \mathcal{F}^{p+2} \) and \(\Lambda : \mathcal{F}^p \to \mathcal{F}^{p-2} \) are defined respectively by

\[
Lu_{i_1 \ldots i_p} = \sum_{a=1}^{p} \phi_{i_a}^{r} u_{r i_1 \ldots i_p},
\]

\[
\Lambda u_{i_1 \ldots i_p} = \sum_{a=1}^{p} \phi_{i_a}^{r} u_{i_1 \ldots \widehat{i_a} \ldots i_p}
\]

for any \(p \)-form \(u \), where \(\phi^{ji} = g^{j i} \phi_{ji} \).
\[\mathcal{F}^p \rightarrow \mathcal{F}^{p-2} \] are written by \(Lu = \phi \wedge u \) and \(\Lambda u = (-1)^p \ast L \ast u \) for any \(p \)-form \(u \). \(\Lambda \) is trivial on 0 and 1-forms. These local expressions are defined by

\[
(Lu)_{kji_1\ldots i_p} = \phi_{kj} u_{i_1i_2\ldots i_p} - \sum_{a=1}^p \phi_{i_aj} u_{i_1\ldots i_{a-1}k\ldots i_p} - \sum_{b=1}^p \phi_{kib} u_{i_1\ldots j\ldots i_p} + \sum_{a<b} \phi_{i_ajb} u_{i_1\ldots k\ldots j\ldots i_p},
\]

\[
(\Lambda u)_{k_3\ldots i_p} = \frac{1}{2} \phi^{rs} u_{rsi_3\ldots i_p}.
\]

For the operators above, we find from [1]:

1. \((d\Lambda - \Lambda d)u = -(C + c)u \),
2. \((dL - Ld)u = 0 \),
3. \((\Gamma u, v) = (u, Cv) \),
4. \((\gamma u, v) = (u, cv) \),

where \((\ , \) \) denotes the global inner product.

3. Proof of theorem

From (1.1), we find \(\delta u = -n \rho \). Operating \(\phi^k_h \) to (1.1), we obtain

\[
(\Gamma u)_{hj} - (d\Phi u)_{hj} + (\gamma u)_{hj} = 4(L\rho)_{hj}.
\]

Moreover in a compact almost Kählerian manifold, it follows from [1] that for a \(p \)-form \(u \) and a \((p+1)\)-form \(v \)

\[
(\Gamma u, v) = (u, C v), \quad (\gamma u, v) = (u, c v),
\]

where \((\ , \) \) denotes the global inner product.
Substituting (3.2) into (3.1) and owing to (2.6) and (3.2), we get $n\Phi - 4\delta L u = 0$. Applying δ to this, we find $\delta d \Phi u = 0$, namely $d \Phi u = 0$ $(n \geq 4)$. From (3.1) we obtain $L \delta u = 0$, which means that $\delta u = 0$ $(n \geq 4)$, that is $\rho = 0$ $(n \geq 4)$. Consequently, we complete the proof of Theorem.

References