AN ERROR BOUND ANALYSIS FOR CUBIC SPLINE APPROXIMATION OF CONIC SECTION

YOUNG JOON AHN

Abstract. In this paper we present an error bound for cubic spline approximation of conic section curve. We compare it to the error bound proposed by Floater [1]. The error estimating function proposed in this paper is sharper than Floater’s at the mid-point of parameter, which means the overall error bound is sharper than Floater’s if the estimating function has the maximum at the mid-point.

1. Introduction

The conversion problem of the rational splines into the (non-rational) splines is one of the most important requirements in CAD or CAGD. Many results for this topic have been published [2, 3, 4, 5, 6], but none of them could obtain the closed error form of optimal convergence order except for special cases. In the spline approximation schemes for the special case of rational curves, e.g., circular arcs [7, 8, 9, 10, 11] and conic sections [1, 12, 13], the closed error forms of optimal order of convergence have been presented. Especially, Floater used the implicit form of conic section [14]

\[\tau_1^2 - 4\mu^2\tau_0\tau_2 = 0, \]

where \(\mu = w_1/\sqrt{w_0w_2} \) is the fullness factor [15, 16, 17], \(w_0, w_1, w_2 \) are the weights of the rational Bézier representation of the curve and \(\tau_0, \tau_1, \tau_2 \) are the barycentric coordinates with respect to the control points \(b_0, b_1, b_2 \) of the conic. In this paper, we use the implicit form

\[\tau_1 - 2\mu\sqrt{\tau_0\tau_2} = 0, \]

Received August 20, 2001.
2000 Mathematics Subject Classification: 41A50, 41A52, 65D05, 64D07.
Key words and phrases: conic section; spline approximation; cubic Bézier curve; error analysis; geometric Hermite interpolation.
to obtain another error bound. In case the error function has its maximum at the mid-point of parameter, we can see that our error analysis give the error bounds sharper than Floater's analysis [1]. We apply our error analysis to the cubic spline approximations for conic sections and compare our error bounds to the former works [1], numerically. All error analysis discussed in this paper can be extended to tensor product surfaces, as well as to polynomial approximation of higher degree than three, if the error estimating function proposed in this paper has the maximum at the mid-point of parameter.

2. Distance from conic section to the approximation curve

In this section we consider the distance between the approximation curve and given the conic section represented in the standard rational quadratic Bézier form

\[r(t) = \frac{B^0_0(t)p_0 + B^2_1(t)\mu p_1 + B^2_2(t)p_2}{B^2_0(t) + B^2_1(t)\mu + B^2_2(t)}, \quad t \in [0, 1], \]

where \(p_0, p_1, p_2 \in \mathbb{R}^2 \) are the control points, \(\mu > 0 \) is the weight associated with \(p_1 \), and \(B^n_i(t) \) is the Bernstein polynomial of degree \(n \) given by

\[B^n_i(t) = \frac{n!}{i!(n-i)!} t^i (1-t)^{n-i}. \]

Any point \((x, y) \in \triangle p_0 p_1 p_2\) can be written uniquely in terms of barycentric coordinates \(\tau_0, \tau_1, \tau_2 \), where \(\tau_0 + \tau_1 + \tau_2 = 1 \), with respect to \(\triangle p_0 p_1 p_2 \): \((x, y) = \tau_0 p_0 + \tau_1 p_1 + \tau_2 p_2\). Consequently any function can be expressed as a function of \(\tau_0, \tau_1, \tau_2 \). We define the functions \(f_0 \) and \(f_1 : \triangle p_0 p_1 p_2 \to \mathbb{R} \) by

\[(1) \quad f_0(x, y) = \tau_1^2 - 4\mu^2 \tau_0 \tau_2 \quad \text{and} \quad f_1(x, y) = \tau_1 - 2\mu \sqrt{\tau_0 \tau_2}. \]

Since \(0 \leq \tau_i \leq 1, i = 0, 1, 2 \), for each \((x, y) \in \triangle p_0 p_1 p_2\), the functions \(f_0 \) and \(f_1 \) are well-defined in \(\triangle p_0 p_1 p_2 \), especially, \(f_0 \) is defined in the whole \(xy \)-plane [14]. The following lemma is also a well-known fact [14].

Lemma 2.1. Let \(f_j : \triangle p_0 p_1 p_2 \to \mathbb{R} \) be defined as in Equation (1). For \(t \in [0, 1] \), the point \(r(t) \) satisfies the equation \(f_j(r(t)) = 0 \), \(j = 0, 1 \).

For any two plane curves \(c(s) \) and \(q(t) \), \(s, t \in [0, 1] \), it is not easy to find the Hausdorff distance \(d_H(c, q) \) in general, where

\[d_H(c, q) = \max_{s, t} \{ \min_{s} |c(s) - q(t)|, \min_{t} |c(s) - q(t)| \}. \]
An error bound analysis for cubic spline

Figure 1. In the triangle $\triangle p_0 p_1 p_2$, the coordinates (u, ξ) is symmetric with respect to the line passing through p_1 and $\frac{p_0 + p_2}{2}$.

For any onto function $\phi : [0, 1] \to [0, 1]$ it is clear that

(2) $\max_s \min_t |c(s) - q(t)| \leq \max_s |c(s) - q(\phi(s))|.$

For each $t \in [0, 1]$, let $s' \in [0, 1]$ be a value satisfying $\phi(s') = t$. (It is possible since ϕ is onto.) Then

(3) $\max_s \min_t |c(s) - q(t)| \leq \max_{s'} |c(s') - q(t)| = \max_{s'} |c(s') - q(\phi(s'))|,$

since ϕ is onto. Thus it follows from Equations (2)-(3) that

(4) $d_H(c, q) \leq \max_{0 \leq s \leq 1} |c(s) - q(\phi(s))|.$

Using the inequality (4) we present a new bound of the Hausdorff distance $d_H(c, r)$ between the conic $r(t)$ with control points p_0, p_1, p_2 and the plane curve $c(s)$ contained in the triangle $\triangle p_0 p_1 p_2$, in the following proposition.

Proposition 2.2. Suppose that $c : [0, 1] \to \mathbb{R}^2$ is any continuous curve which lies entirely inside the (closed) triangle $\triangle p_0 p_1 p_2$ and such that $c(0) = p_0$ and $c(1) = p_2$. Then

(5) $d_H(c, r) \leq \frac{1}{2(1 + \mu)} \max_{s \in [0, 1]} |f_1(c(s))||p_0 + p_2 - 2p_1| =: \varepsilon(c, r).$
Proof. For each point \(c(s) \), \(s \in (0, 1) \), there exist two intersection points of the boundary of \(\triangle p_0p_1p_2 \) and the line passing through the point \(c(s) \) along the direction \(p_0 + p_2 - 2p_1 \), as shown in Figure 1. We denote the intersection point on the line segment \(\overline{p_3p_2} \) by \(p_3 \), and the other by \(p_4 \). Thus we have

\[
\begin{align*}
(6) \quad p_3 &= (1 - u)p_0 + up_1 + \frac{p_0 + P_2}{2} \quad \text{and} \quad p_4 = (1 - u)p_0 + up_1, \\
(7) \quad p_3 &= (1 - u)p_2 + up_0 + \frac{p_0 + P_2}{2} \quad \text{and} \quad p_4 = (1 - u)p_2 + up_1,
\end{align*}
\]

for some \(u \in [0, 1] \). Let \(h : [0, 1] \to \mathbb{R} \) be the restriction of \(f_1 \) to the line segment \(\overline{p_3p_4} \)

\[
h(\xi) = f_1((1 - \xi)p_3 + \xi p_4),
\]

\(\xi \in [0, 1] \). By Equations (6)-(7), we have

\[
(8) \quad h(\xi) = f_1\left(\frac{2 - u - u\xi}{2}p_2 + up_1 + \frac{(1 - \xi)u}{2}p_2 - 2\right),
\]

for \(i = 0 \) or \(1 \). It follows from Equations (1) and (8) that

\[
h(\xi) = u\xi - \mu\sqrt{(2 - u - u\xi)(1 - \xi)}u
\]

and its derivative

\[
h'(\xi) = u + \frac{\mu(1 - u\xi)u}{\sqrt{(2 - u - u\xi)(1 - \xi)}u}
\]

for all \(\xi \in [0, 1] \). Since

\[
\sqrt{(2 - u - u\xi)(1 - \xi)}u \leq \left(\frac{2 - u - u\xi}{2} + (1 - \xi)u\right) = 1 - u\xi
\]

for all \(u, \xi \in [0, 1] \), we have

\[
(9) \quad h'(\xi) \geq u(1 + \mu).
\]

Since \(r \) and \(c \) are continuous and \(r(i) = c(i) = p_2i, \ i = 0, 1 \), for each \(s \in [0, 1] \) there exists \(t \in [0, 1] \) such that \(r(t) \) and \(c(s) \) lie on the same line segment \(\overline{p_3p_1} \) and

\[
r(t) = (1 - \xi_0)p_3 + \xi_0p_4 \quad \text{and} \quad c(s) = (1 - \xi_1)p_3 + \xi_1p_4
\]

for some \(\xi_0, \xi_1 \in (0, 1) \). By the mean value theorem and Equation (9),

\[
|h(\xi_1) - h(\xi_0)| \geq \min_{\xi} h'(\xi) |\xi_1 - \xi_0| \geq u(1 + \mu)|\xi_1 - \xi_0|.
\]

Thus we have

\[
|c(s) - r(t)| = |\xi_1 - \xi_0| |p_3 - p_4| \leq \frac{|h(\xi_1)|}{u(1 + \mu)} |p_3 - p_4|
\]
since \(h(\xi_0) = 0 \) or equivalently \(f_1(r(t)) = 0 \). By \(|p_3 - p_4| = u|p_0 + p_2 - 2p_1|/2\) and \(h(\xi_1) = f_1(c(s)) \), we get

\[
|c(s) - r(t)| \leq \frac{1}{2 + 2\mu}|f_1(c(s))||p_0 + p_2 - 2p_1|.
\]

Hence the required estimate (5) follows from Equations (4) and (10) by taking the maximum over \(s \in [0, 1] \).

Floater [1, 13] suggested the error bound by

\[
d_H(c, r) \leq \frac{1}{4} \max\{\frac{1}{\mu^2}, 1\} \max_{s \in [0, 1]} |f_0(c(s))||p_0 + p_2 - 2p_1| =: \psi(c, r).
\]

3. Cubic interpolations for conic sections

In this section we apply Proposition 2.2 to cubic interpolations for conic sections whose error functions have the maximum at the mid-point of parameter. Let \(b(t) \) be the cubic \(G^1 \) end-points interpolation represented by

\[
b(t) := \sum_{i=0}^{3} B^3_i(t)b_i, \quad t \in [0, 1],
\]

where

\[
(12) \quad b_0 = p_0, \quad b_3 = p_2, \quad b_1 = (1 - \lambda)p_0 + \lambda p_1, \quad b_2 = (1 - \lambda)p_2 + \lambda p_1.
\]

The parameter \(\lambda \) (\(0 < \lambda < 1 \)) determines the cubic curve

\[
b(t) = (B_0^3 + (1 - \lambda)B_1^3)p_0 + \lambda(B_1^3 + B_2^3)p_1 + ((1 - \lambda)B_2^3 + B_3^3)p_2,
\]

and its error function

\[
(13) \quad f_0(b(t)) = \frac{t^2(1-t)^2[9\lambda^2 - 4\mu^2((1-t) + 3(1-\lambda)t)\{t + 3(1-\lambda)(1-t)\}]}{t(1-t)[3\lambda - 2\mu\sqrt{(1-t) + 3(1-\lambda)t)\{t + 3(1-\lambda)(1-t)\}]}.
\]

In the following proposition, we show that the error bound \(\varepsilon(b, r) \) is sharper than \(\psi(b, r) \) when the error functions \(f_0(b(t)) \) and \(f_1(b(t)) \) have the maximum at the mid-point of parameter.

Proposition 3.1. If \(f_0(b(t)) \) and \(f_1(b(t)) \) have the maximum at \(t = 1/2 \), then

\[
\varepsilon(b, r) \leq \psi(b, r).
\]
PROOF. By Equation (13), we have

\[f_0(b(1/2)) = \frac{1}{16} \{9\lambda^2 - \mu^2(4 - 3\lambda)^2\} \]
\[f_1(b(1/2)) = \frac{1}{4} \{3\lambda - \mu(4 - 3\lambda)\}. \]

Thus

\[\psi(b, r) \varepsilon(b, r) = 1 + \frac{\mu}{8} \{3\lambda + \mu(4 - 3\lambda)\} \max\{1/\mu^2, 1\} \]

\[= \begin{cases}
\frac{1 + \mu}{8} \{3\lambda + \mu(4 - 3\lambda)\} > \frac{1 + \mu}{2} > 1 & \text{if } \mu > 1 \\
\frac{1 + \mu}{8} \{3\lambda(1/\mu - 1) + 4\} > 1 & \text{if } \mu < 1
\end{cases} \]

and the assertion is obtained.

The functions \(f_0 \) and \(f_1 \) have the maximum at \(t = 1/2 \) for some \(\lambda(\mu) \) such as in the following Propositions 3.2-3.4. Note that all cubic Bézier curves with \(G^1 \) end-point interpolation of the conic section have the control points in forms of

\[b_0 = p_0, \quad b_3 = p_2, \quad b_1 = (1 - \lambda_1)p_0 + \lambda_1 p_1, \quad b_2 = (1 - \lambda_2)p_2 + \lambda_2 p_1 \]

for \(\lambda_1, \lambda_2 \in (0, 1) \). But the barycentric coordinates of \(r(t) \) and \(b_{\lambda_1, \lambda_2}(t) \) for \(\lambda_1 = \lambda_2 \), are symmetric with respect to the line passing two points \(p_1 \) and \((p_0 + p_2)/2 \), and both error bounds \(\varepsilon(b, r) \) and \(\psi(b, r) \) as in Equations (5) and (11) depend on the barycentric coordinates and the length \(|p_0 + p_2 - 2p_1| \), not on the difference of length of two legs \(|p_0 - p_1| \) and \(|p_1 - p_2| \). Hence we deal only the case of \(\lambda_1 = \lambda_2 \), i.e., the inner control points of the cubic \(G^1 \) end-points interpolation \(b(t) \) in this paper are the same as in Equation (12).

Thus the error function \(f_1(b(t)) \) has the symmetry with respect to \(t = 1/2 \). For the simplicity, putting \(\theta := t(1 - t) \) for \(t \in [0, 1/2] \) and \(F(\theta) := f_1(b(t)) \) for \(\theta \in [0, 1/4] \), we have

\[F(\theta) = \theta \left[3\lambda - 2\mu\sqrt{(3\lambda - 2)^2\theta + 3 - 3\lambda} \right]. \]

In the following propositions, we present the maximum error bounds for the variant cubic interpolations having the parameter \(\lambda \).

Proposition 3.2. Set \(\lambda(\mu) = 2\mu/\left(\mu + \sqrt{\mu^2 + 3}\right) \). Then \(b \) is a \(G^2 \) Hermite interpolation of \(r \), and the Hausdorff distance between the two
An error bound analysis for cubic spline

Figure 2. Two error functions $\varepsilon(b, r)$ and $\psi(b, r)$ for conic approximation with $\lambda(\mu) = 2\mu/(\mu + \sqrt{\mu^2 + 3})$, where $|p_0 + p_2 - 2p_1| = 1$.

two curves r and b is bounded by

$$d_H(b, r) \leq \varepsilon(b, r) = \frac{\mu(\mu + 1 - \sqrt{3 + \mu^2})^2}{8(1 + \mu)}|p_0 + p_2 - 2p_1|.$$

Proof. It is well-known [1, 18] that $b(t)$ is a G^2 end-points interpolation of $r(t)$. By Equation (14) we have

$$F(\theta) = \frac{-2\mu\theta}{\mu + \sqrt{\mu^2 + 3}} \left[\sqrt{9 + 4\theta(5\mu^2 + 3 - 4\mu\sqrt{\mu^2 + 3}) - 3} \right].$$

Since

$$4\mu\sqrt{\mu^2 + 3} \leq \frac{8\mu^2 + 2(\mu^2 + 3)}{2} = 5\mu^2 + 3,$$

the equation in the bracket of Equation (15) is increasing as a function of θ and is positive. Thus $|F(\theta)|$ is increasing and has the maximum at $\theta = 1/4$, i.e.,

$$|f_1(b(t))| = |F(\theta)| \leq |F(1/4)| = \frac{\mu(\mu + 1 - \sqrt{3 + \mu^2})^2}{4}$$

for all $t \in [0, 1/2]$. Thus by Proposition 2.2, we have the assertions.
Remark. Put $\lambda(\mu) = 2\mu / (\mu + \sqrt{\mu^2 + 3})$. Then $f_0(b(t))$ is a polynomial of degree six and its absolute maximum is obtained at $t = 1/2$, and

$$d_H(b, r) \leq \psi(b, r) = \frac{(\mu^2 + 1 - \mu \sqrt{\mu^2 + 3})^2}{16} \max\{1, \mu^2\}|p_0 + p_2 - 2p_1|.$$

This error bound $\psi(b, r)$ is obtainable by the error analysis in [1]. As shown in Figure 2, $\varepsilon(b, r)$ is a sharper error bound than $\psi(b, r)$.

We adopt the method of subdivision of conic section proposed by Floater [1, 12, 13]. At any step, every conic segment is subdivided at its shoulder point into two segments, so that at each step r, the conic r consists of the 2^r segments. Under the subdivision scheme, the cubic approximate spline with $\lambda(\mu) = 2(6\mu^2 + 1 - \sqrt{3\mu^2 + 1})/(12\mu^2 + 3)$ of the conic section r is G^4. (Refer to [1].)

Proposition 3.3. Set $\lambda(\mu) = 2(6\mu^2 + 1 - \sqrt{3\mu^2 + 1})/(12\mu^2 + 3)$. Then

$$d_H(r, p) \leq \frac{2\mu^3 - 6\mu^2 + \mu - 1 + (\mu + 1)\sqrt{3\mu^2 + 1}}{4(\mu + 1)(4\mu^2 + 1)}|p_0 + p_2 - 2p_1|.$$

Proof. Putting $F(\theta)$ as in Equation (14) we have

$$f_1(b(t)) = F(\theta) = \frac{2\theta}{4\mu^2 + 1}[6\mu^2 + 1 - \sqrt{3\mu^2 + 1} - \mu \sqrt{F_1(\theta)}]$$

for $\theta \in [0, 1/4]$, where

$$F_1(\theta) = 4\theta(2\mu^2 - \sqrt{3\mu^2 + 1})^2 + (4\mu^2 + 1)(1 + 2\sqrt{3\mu^2 + 1}).$$

Since $F_1(\theta)$ is a linear increasing function and

$$[6\mu^2 + 1 - \sqrt{3\mu^2 + 1} - \mu \sqrt{F_1(0)}] \leq 0$$

for all $\mu > 0$, $F(\theta)$ is negative for all $\theta \in [0, 1/4]$, and also has absolute maximum at $\theta = 1/4$, i.e.,

$$|f_1(b(t))| \leq |F(1/4)| = \frac{2\mu^3 - 6\mu^2 + \mu - 1 + (\mu + 1)\sqrt{3\mu^2 + 1}}{2(1 + 4\mu^2)}$$

for all $t \in [0, 1]$. Thus, by Proposition 2.2, we have the assertion. □

Remark. Put $\lambda(\mu) = 2(6\mu^2 + 1 - \sqrt{3\mu^2 + 1})/(12\mu^2 + 3)$. Then $f_0(b(t))$ is a polynomial of degree six and its absolute maximum obtained...
Figure 3. Two error functions $\varepsilon(b,r)$ and $\psi(b,r)$ for conic approximation with $\lambda(\mu) = 2(6\mu^2 + 1 - \sqrt{3\mu^2 + 1})/(12\mu^2 + 3)$, where $|p_0 + p_2 - 2p_1| = 1$.

at $t = 1/2$, and

$$d_H(b, r) \leq \psi(b, r) = \frac{4\mu^6 - 29\mu^4 - 13\mu^2 - 2 + 2(2\mu^4 + 7\mu^2 + 1)\sqrt{3\mu^2 + 1}}{4(4\mu^2 + 1)^2} \times \frac{\max\{1, \mu^2\}}{4\mu^2} |p_0 + p_2 - 2p_1|.$$

This error bound $\psi(b, r)$ is obtainable by the error analysis in [1]. As shown in Figure 3, $\varepsilon(b, r)$ is a sharper error bound than $\psi(b, r)$.

Note [1] that the cubic approximate spline with $\lambda(\mu) = 2\mu^2/(2\mu^2 + 1)$ of the conic section r is C^2.

Proposition 3.4. Set $\lambda(\mu) = 2\mu^2/(2\mu^2 + 1)$. Then the Hausdorff distance $d_H(r, p)$ is bounded by

$$\varepsilon(b, r) = \begin{cases}
\frac{|A_1(\mu)|}{2(1 + \mu)} |p_0 + p_2 - 2p_1| & \text{if } \mu \leq \mu_0, \\
\frac{\max\{|A_1(\mu)|, |A_2(\mu)|\}}{2(1 + \mu)} |p_0 + p_2 - 2p_1| & \text{if } \mu > \mu_0.
\end{cases}$$
where
\[\mu_0 = \frac{1}{3} \left(1 + (37 + 9\sqrt{17})^{1/3} - 2(37 + 9\sqrt{17})^{-1/3} \right) \approx 1.575, \]
and
\[
A_1(\mu) = -\frac{\mu(\mu - 1)(\mu - 2)}{2(2\mu^2 + 1)}, \\
A_2(\mu) = \frac{\mu}{\mu(5\mu^2 + 3) + (3\mu^2 + 1)^{3/2}}.
\]

Proof. By Equation (14) we have
\[F(\theta) = \frac{2\mu}{2\mu^2 + 1} F_2(\theta), \]
where \(F_2(\theta) = \theta(3\mu - \sqrt{F_3(\theta)}) \) and
\[F_3(\theta) = 3(1 + \mu^2) + 4\theta(1 - \mu^2)^2. \]

For \(\mu < 1 \), since \(3\mu - \sqrt{F_3(\theta)} \) is negative decreasing, \(|F_2(\theta)| \) has its maximum at \(\theta = 1/4 \).

For \(\mu > 1 \), we have
\[F'_2(\theta) = \frac{-3}{\sqrt{F_3(\theta)}} \left(2\mu^2 + 1 + 2\theta(1 + \mu^2)^2 - \mu\sqrt{F_3(\theta)} \right), \]
which has a unique positive real zero
\[\theta_0 = \frac{\mu\sqrt{1 + 3\mu^2} - (1 + \mu^2)}{2(\mu^2 - 1)^2} = \frac{2\mu^2 + 1}{2(\mu^2 - 1)(\mu\sqrt{3\mu^2 + 1} + 1 + \mu^2 + 1)}, \]
which is strictly decreasing from \(\infty \) to zero as \(\mu \) is increasing from 1 to \(\infty \). Thus we have unique root \(\mu = \mu_0 \) satisfying the equation \(\theta_0 = 1/4 \). For \(\mu \leq \mu_0 \), \(|F(\theta)| \) has its maximum at \(\theta = 1/4 \), and for \(\mu > \mu_0 \), \(|F_2(\theta)| \) has the local maximum at \(\theta_0 \).

Thus, for \(\mu \leq \mu_0 \), \(|F(\theta)| \) has the maximum \(|F(1/4)| \), and for \(\mu > \mu_0 \), the maximum of \(|F(\theta)| \) equals \(\max\{|F(1/4)|, |F(\theta_0)|\} \). Since \(F(1/4) = A_1(\mu) \) and \(F(\theta_0) = A_2(\mu) \), the assertion follows.

Remark. Put \(\lambda(\mu) = 2\mu^2/(2\mu^2 + 1) \). Then the sixth degree polynomial
\[
f_0(b(t)) = \frac{4\mu^2(\mu^2 - 1)}{(2\mu^2 + 1)^2} \left[3 - 4(\mu^2 - 1)t(1 - t) \right] t^2(1 - t)^2
\]
Figure 4. Two error functions $\varepsilon(b, r)$ and $\psi(b, r)$ for conic approximation with $\lambda(\mu) = 2\mu^2/(2\mu^2 + 1)$, where $|p_0 + p_2 - 2p_1| = 1$.

is monotone in $(0, 1/2)$ for $\mu \leq \sqrt{3}$, so that it has the unique local extremum

$$f(b(1/2)) = -\frac{\mu^2(\mu^2 - 1)(\mu^2 - 4)}{4(2\mu^2 + 1)^2},$$

in $(0, 1)$. For $\mu > \sqrt{3}$, $f_0(b(t))$ has a unique local extremum $\mu^2/(2\mu^2 + 1)^2(\mu^2 - 1)$ at the point satisfying $t(1 - t) = 1/2(\mu^2 - 1)$ in $(0, 1/2)$. Thus the Hausdorff distance $d_H(r, p)$ is bounded by

$$\psi(b, r) = \begin{cases}
\frac{1}{4} \max\left\{\frac{1}{\mu^2}, 1\right\} \frac{\mu^2(\mu^2 - 1)(\mu^2 - 4)}{4(2\mu^2 + 1)^2} |p_0 + p_2 - 2p_1| & \text{if } \mu \leq \sqrt{3} \\
\frac{1}{4} \frac{\mu^2}{(2\mu^2 + 1)^2(\mu^2 - 1)} |p_0 + p_2 - 2p_1| & \text{if } \mu > \sqrt{3}.
\end{cases}$$

This error bound $\psi(b, r)$ is obtainable by the error analysis in [1]. As shown in Figure 4, $\varepsilon(b, r)$ is a sharper error bound than $\psi(b, r)$.
Figure 5. A quarter of the ellipse plotted by solid lines and its approximate cubic Bézier curves plotted by dash-lines or circles with $\lambda(\mu) = \frac{2\mu}{\mu + \sqrt{\mu^2 + 3}}$, $\lambda(\mu) = \frac{2\mu^2}{2\mu^2 + 3}$ and $\lambda(\mu) = \frac{2\mu^2}{2\mu^2 + 3}$, respectively.

4. Examples

In this section, we present the cubic interpolations of ellipse and the error functions. Let $\mathbf{r}(t)$ be the conic section with control points $(2,0)$, $(2,1)$ and $(0,1)$, in order, and weight $\mu = 1/\sqrt{2}$, which yields a quarter of ellipse in the first quadrant, as shown in Figure 5. We also plot the G^1 cubic approximation Bézier curves $\mathbf{b}(t)$ having $\lambda(\mu) = 2\mu/(\mu + \sqrt{\mu^2 + 3})$, $\lambda(\mu) = 2(6\mu^2 + 1 - 3\sqrt{3\mu^2 + 1})/(12\mu^2 + 3)$, and $\lambda(\mu) = 2\mu^2/(2\mu^2 + 1)$, respectively, in Figure 5. In Figure 6, we plot the error functions $\frac{1}{2(\mu + 1)} f_1(\mathbf{b}(t))\left|\mathbf{p}_0 + \mathbf{p}_2 - 2\mathbf{p}_1\right|$ by solid lines, and $\frac{1}{2}\max\left\{\frac{1}{\mu^2}, 1\right\} f_0(\mathbf{b}(t))\left|\mathbf{p}_0 + \mathbf{p}_2 - 2\mathbf{p}_1\right|$ by dash-lines, whose maximum norms are equal to $\varepsilon(\mathbf{b}, \mathbf{r})$ and $\psi(\mathbf{b}, \mathbf{r})$, respectively. We can see that the maximum norm $\varepsilon(\mathbf{b}, \mathbf{r})$ is less than $\psi(\mathbf{b}, \mathbf{r})$. Although the error function $\frac{1}{2(\mu + 1)} f_1(\mathbf{b}(t))\left|\mathbf{p}_0 + \mathbf{p}_2 - 2\mathbf{p}_1\right|$ is not smooth at both end points as shown in Figure 6, the cubic approximation Bézier curve $\mathbf{b}(t)$ is at least G^1 end points interpolation.
5. Comments

In this paper, we presented an error analysis of spline approximation for conic section curve, and we applied it to the cubic approximations. We compared this to the error bound obtainable by the method of Floater, and we saw that our analysis gives a sharp error bounds in case the error has the maximum at the mid-point of parameter. Furthermore, this error analysis can be extended to the approximations of conic sections by quartic or quintic splines, and to the approximations of quadric surfaces by tensor product splines.

ACKNOWLEDGEMENTS. The author is very grateful to the anonymous referees for the inspiring comments and the valuable suggestions which improved our paper considerably.

References

Department of Mathematics
Ajou University
Kyunggi-do 442-749, Korea
E-mail: ahn@madang.ajou.ac.kr