FUZZY r-REGULAR OPEN SETS AND FUZZY ALMOST r-CONTINUOUS MAPS

SEOK JONG LEE AND EUN PYO LEE

ABSTRACT. We introduce the concepts of fuzzy r-regular open sets and fuzzy almost r-continuous maps in the fuzzy topology of Chattopadhyay. Also we investigate the equivalent conditions of the fuzzy almost r-continuity.

1. Introduction

Chang [2] introduced fuzzy topological spaces and other authors continued the investigation of such spaces. Azad [1] introduced the concepts of fuzzy regular open set and fuzzy almost r-continuous maps in Chang’s fuzzy topology. Chattopadhyay et al. [4] introduced another definition of fuzzy topology as a generalization of Chang’s fuzzy topology. By generalizing the definitions of Azad, we introduce the concepts of fuzzy r-regular open sets and fuzzy almost r-continuous maps in the fuzzy topology of Chattopadhyay. Then the concepts introduced by Azad become special cases of our definition. Also we investigate the equivalent conditions of the fuzzy almost r-continuity.

2. Preliminaries

In this paper, we denote by I the unit interval $[0, 1]$ of the real line and $I_0 = (0, 1]$. A member μ of I^X is called a fuzzy set in X. For any $\mu \in I^X$, μ^c denotes the complement $1 - \mu$. By $\tilde{0}$ and $\tilde{1}$ we denote constant maps on X with value 0 and 1, respectively. All other notations are standard notations of fuzzy set theory.

Received July 24, 2001.
2000 Mathematics Subject Classification: 54A40.
Key words and phrases: fuzzy r-regular open, fuzzy almost r-continuous.
This work was supported partly by the Basic Science Research Institute (BSRI-01-4) of Chungbuk National University.
A Chang’s fuzzy topology on X is a family T of fuzzy sets in X which satisfies the following three properties:

1. $\tilde{0}, \tilde{1} \in T$.
2. If $\mu_1, \mu_2 \in T$ then $\mu_1 \land \mu_2 \in T$.
3. If $\mu_i \in T$ for each i, then $\bigvee \mu_i \in T$.

The pair (X, T) is called a Chang’s fuzzy topological space.

A fuzzy topology on X is a map $T : I^X \rightarrow I$ which satisfies the following properties:

1. $T(\tilde{0}) = T(\tilde{1}) = 1$,
2. $T(\mu_1 \land \mu_2) \geq T(\mu_1) \land T(\mu_2)$,
3. $T(\bigvee \mu_i) \geq \bigwedge T(\mu_i)$.

The pair (X, T) is called a fuzzy topological space.

For each $\alpha \in (0, 1]$, a fuzzy point x_α in X is a fuzzy set in X defined by

$$x_\alpha(y) = \begin{cases} \alpha & \text{if } y = x, \\
0 & \text{if } y \neq x. \end{cases}$$

In this case, x and α are called the support and the value of x_α, respectively. A fuzzy point x_α is said to belong to a fuzzy set μ in X, denoted by $x_\alpha \in \mu$, if $\alpha \leq \mu(x)$. A fuzzy point x_α in X is said to be quasi-coincident with μ, denoted by $x_\alpha q \mu$, if $\alpha + \mu(x) > 1$. A fuzzy set ρ in X is said to be quasi-coincident with a fuzzy set μ in X, denoted by $\rho q \mu$, if there is an $x \in X$ such that $\rho(x) + \mu(x) > 1$.

Definition 2.1. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is called

1. a fuzzy r-open set in X if $T(\mu) \geq r$,
2. a fuzzy r-closed set in X if $T(\mu^c) \geq r$.

Definition 2.2. ([3]) Let (X, T) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-closure is defined by

$$\text{cl}(\mu, r) = \bigwedge \{ \rho \in I^X : \mu \leq \rho, T(\rho^c) \geq r \}.$$

Definition 2.3. ([5]) Let (X, T) be a fuzzy topological space. For each $r \in I_0$ and for each $\mu \in I^X$, the fuzzy r-interior is defined by

$$\text{int}(\mu, r) = \bigvee \{ \rho \in I^X : \mu \geq \rho, T(\rho) \geq r \}.$$
Theorem 2.4. ([5]) For a fuzzy set μ in a fuzzy topological space (X, T) and $r \in I_0$, we have:

1. $\text{int}(\mu, r)^c = \text{cl}(\mu^c, r)$.
2. $\text{cl}(\mu, r)^c = \text{int}(\mu^c, r)$.

Definition 2.5. ([5]) Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is said to be

1. fuzzy r-semiopen if there is a fuzzy r-open set ρ in X such that $\rho \leq \mu \leq \text{cl}(\rho, r)$,
2. fuzzy r-semiclosed if there is a fuzzy r-closed set ρ in X such that $\text{int}(\rho, r) \leq \mu \leq \rho$.

Definition 2.6. ([5]) Let x_α be a fuzzy point in a fuzzy topological space (X, T) and $r \in I_0$. Then a fuzzy set μ in X is called

1. a fuzzy r-neighborhood of x_α if there is a fuzzy r-open set ρ in X such that $x_\alpha \in \rho \leq \mu$,
2. a fuzzy r-quasi-neighborhood of x_α if there is a fuzzy r-open set ρ in X such that $x_\alpha \sqsubseteq \rho \leq \mu$.

Definition 2.7. ([5]) Let $f : (X, T) \to (Y, U)$ be a map from a fuzzy topological space X to another fuzzy topological space Y and $r \in I_0$. Then f is called

1. a fuzzy r-continuous map if $f^{-1}(\mu)$ is a fuzzy r-open set of X for each fuzzy r-open set μ in Y,
2. a fuzzy r-semicontinuous map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set of X for each fuzzy r-open set μ in Y,
3. a fuzzy r-irresolute map if $f^{-1}(\mu)$ is a fuzzy r-semiopen set of X for each fuzzy r-semiopen set μ in Y.

All the other nonstandard definitions and notations can be found in [5] and [6].

3. Fuzzy r-regular open sets

We define the notions of fuzzy r-regular open sets and fuzzy r-regular closed sets, and investigate some of their properties.

Definition 3.1. Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is said to be

1. fuzzy r-regular open if $\text{int}(\text{cl}(\mu, r), r) = \mu$,
2. fuzzy r-regular closed if $\text{cl}(\text{int}(\mu, r), r) = \mu$.
Theorem 3.2. Let μ be a fuzzy set in a fuzzy topological space (X, T) and $r \in I_0$. Then μ is fuzzy r-regular open if and only if μ^c is fuzzy r-regular closed.

Proof. It follows from Theorem 2.4. □

Remark 3.3. Clearly, every fuzzy r-regular open (r-regular closed) set is fuzzy r-open (r-closed). That the converse need not be true is shown by the following example. The example also shows that the union (intersection) of any two fuzzy r-regular open (r-regular closed) sets need not be fuzzy r-regular open (r-regular closed).

Example 3.4. Let $X = I$ and μ_1, μ_2 and μ_3 be fuzzy sets in X defined by
\[
\mu_1(x) = \begin{cases}
0 & \text{if } 0 \leq x \leq \frac{1}{2}, \\
2x - 1 & \text{if } \frac{1}{2} \leq x \leq 1;
\end{cases}
\]
\[
\mu_2(x) = \begin{cases}
1 & \text{if } 0 \leq x \leq \frac{1}{4}, \\
-4x + 2 & \text{if } \frac{1}{4} \leq x \leq \frac{1}{2}, \\
0 & \text{if } \frac{1}{2} \leq x \leq 1;
\end{cases}
\]
and
\[
\mu_3(x) = \begin{cases}
0 & \text{if } 0 \leq x \leq \frac{1}{4}, \\
\frac{1}{3}(4x - 1) & \text{if } \frac{1}{4} \leq x \leq 1.
\end{cases}
\]

Define $T : I^X \rightarrow I$ by
\[
T(\mu) = \begin{cases}
1 & \text{if } \mu = 0, 1, \\
\frac{1}{2} & \text{if } \mu = \mu_1, \mu_2, \mu_1 \lor \mu_2, \\
0 & \text{otherwise}.
\end{cases}
\]

Then clearly T is a fuzzy topology on X.

1. Clearly, $\mu_1 \lor \mu_2$ is fuzzy $\frac{1}{2}$-open. Since $\text{int}(\text{cl}(\mu_1 \lor \mu_2, \frac{1}{2}), \frac{1}{2}) = \tilde{I} \neq \mu_1 \lor \mu_2$, $\mu_1 \lor \mu_2$ is not a fuzzy $\frac{1}{2}$-regular open set.

2. Since $\text{int}(\text{cl}(\mu_1, \frac{1}{2}, \frac{1}{2})) = \text{int}(\mu_2, \frac{1}{2}) = \mu_1$ and $\text{int}(\text{cl}(\mu_2, \frac{1}{2}), \frac{1}{2}) = \text{int}(\mu_1, \frac{1}{2}, \frac{1}{2}) = \mu_2$, μ_1 and μ_2 are fuzzy $\frac{1}{2}$-regular open sets. But $\mu_1 \lor \mu_2$ is not a fuzzy $\frac{1}{2}$-regular open set.

3. In view of Theorem 3.2, μ_1^c and μ_2^c are fuzzy $\frac{1}{2}$-regular closed sets but $\mu_1^c \land \mu_2^c = (\mu_1 \lor \mu_2)^c$ is not a fuzzy $\frac{1}{2}$-regular closed set.
Theorem 3.5. (1) The intersection of two fuzzy r-regular open sets is fuzzy r-regular open.

(2) The union of two fuzzy r-regular closed sets is fuzzy r-regular closed.

Proof. (1) Let μ and ρ be any two fuzzy r-regular open sets in a fuzzy topological space X. Then μ and ρ are fuzzy r-open sets and hence $T(\mu \land \rho) \geq T(\mu) \land T(\rho) \geq r$. Thus $\mu \land \rho$ is a fuzzy r-open set. Since $\mu \land \rho \leq \text{cl}(\mu \land \rho, r)$,

$$\text{int}(\text{cl}(\mu \land \rho, r), r) \geq \text{int}(\mu \land \rho, r) = \mu \land \rho.$$

Now, $\mu \land \rho \leq \mu$ and $\mu \land \rho \leq \rho$ implies

$$\text{int}(\text{cl}(\mu \land \rho, r), r) \leq \text{int}(\text{cl}(\rho, r), r) = \rho.$$

Hence $\text{int}(\text{cl}(\mu \land \rho, r), r) \leq \mu \land \rho$. Therefore $\mu \land \rho$ is fuzzy r-regular open.

(2) It follows from (1) and Theorem 3.2. □

Theorem 3.6. (1) The fuzzy r-closure of a fuzzy r-open set is fuzzy r-regular closed.

(2) The fuzzy r-interior of a fuzzy r-closed set is fuzzy r-regular open.

Proof. (1) Let μ be a fuzzy r-open set in a fuzzy topological space X. Then clearly $\text{int}(\text{cl}(\mu, r), r) \leq \text{cl}(\mu, r)$ implies that

$$\text{cl}(\text{int}(\text{cl}(\mu, r), r), r) \leq \text{cl}(\mu, r) = \text{cl}(\mu, r).$$

Since μ is fuzzy r-open, $\mu = \text{int}(\mu, r)$. Also since $\mu \leq \text{cl}(\mu, r)$, $\mu = \text{int}(\mu, r) \leq \text{int}(\text{cl}(\mu, r), r)$. Thus $\text{cl}(\mu, r) \leq \text{cl}(\text{int}(\text{cl}(\mu, r), r), r)$. Hence $\text{cl}(\mu, r)$ is a fuzzy r-regular closed set.

(2) Similar to (1). □

Let (X, T) be a fuzzy topological space. For an r-cut $T_r = \{\mu \in X \mid T(\mu) \geq r\}$, it is obvious that (X, T_r) is a Chang’s fuzzy topological space for all $r \in \mathbb{I}_0$.

Let (X, T) be a Chang’s fuzzy topological space and $r \in \mathbb{I}_0$. Recall [4] that a fuzzy topology $T^r : \mathcal{P}(X) \rightarrow \mathbb{I}$ is defined by

$$T^r(\mu) = \begin{cases} 1 & \text{if } \mu = \hat{0}, \hat{1}, \\ r & \text{if } \mu \in T - \{\hat{0}, \hat{1}\}, \\ 0 & \text{otherwise}. \end{cases}$$
Theorem 3.7. Let \(\mu \) be a fuzzy set in a fuzzy topological space \((X, T)\) and \(r \in I_0 \). Then \(\mu \) is fuzzy \(r \)-regular open (\(r \)-regular closed) in \((X, T)\) if and only if \(\mu \) is fuzzy regular open (regular closed) in \((X, T_r)\).

Proof. Straightforward. \(\square \)

Theorem 3.8. Let \(\mu \) be a fuzzy set of a Chang’s fuzzy topological space \((X, T)\) and \(r \in I_0 \). Then \(\mu \) is a fuzzy regular open (\(r \)-regular closed) in \((X, T)\) if and only if \(\mu \) is fuzzy \(r \)-regular open (\(r \)-regular closed) in \((X, T_r)\).

Proof. Straightforward. \(\square \)

4. Fuzzy almost \(r \)-continuous maps

We are going to introduce the notions of fuzzy almost \(r \)-continuous maps and investigate some of their properties. Also, we describe the relations among fuzzy almost \(r \)-continuous maps, fuzzy \(r \)-continuous maps and fuzzy \(r \)-semicontinuous maps.

Definition 4.1. Let \(f : (X, T) \to (Y, U) \) be a map from a fuzzy topological space \(X \) to another fuzzy topological space \(Y \) and \(r \in I_0 \). Then \(f \) is called

(1) a fuzzy almost \(r \)-continuous map if \(f^{-1}(\mu) \) is a fuzzy \(r \)-open set of \(X \) for each fuzzy \(r \)-regular open set \(\mu \) in \(Y \), or equivalently, \(f^{-1}(\mu) \) is a fuzzy \(r \)-closed set in \(X \) for each fuzzy \(r \)-regular closed set \(\mu \) in \(Y \),

(2) a fuzzy almost \(r \)-open map if \(f(\rho) \) is a fuzzy \(r \)-open set in \(Y \) for each fuzzy \(r \)-regular open set \(\rho \) in \(X \),

(3) a fuzzy almost \(r \)-closed map if \(f(\rho) \) is a fuzzy \(r \)-closed set in \(Y \) for each fuzzy \(r \)-regular closed set \(\rho \) in \(X \).

Theorem 4.2. Let \(f : (X, T) \to (Y, U) \) be a map and \(r \in I_0 \). Then the following statements are equivalent:

(1) \(f \) is a fuzzy almost \(r \)-continuous map.

(2) \(f^{-1}(\mu) \leq \text{int}(f^{-1}(\text{cl}(\text{int}(\mu, r)), r)) \) for each fuzzy \(r \)-open set \(\mu \) in \(Y \).

(3) \(\text{cl}(f^{-1}(\text{cl}(\text{int}(\mu, r)), r)), r) \leq f^{-1}(\mu) \) for each fuzzy \(r \)-closed set \(\mu \) in \(Y \).
Proof. (1) \(\Rightarrow\) (2) Let \(f\) be fuzzy almost \(r\)-continuous and \(\mu\) any fuzzy \(r\)-open set in \(Y\). Then
\[
\mu = \text{int}(\mu, r) \leq \text{int}(\text{cl}(\mu, r), r).
\]
By Theorem 3.6(2), \(\text{int}(\text{cl}(\mu, r), r)\) is a fuzzy \(r\)-regular open set in \(Y\). Since \(f\) is fuzzy almost \(r\)-continuous, \(f^{-1}(\text{int}(\text{cl}(\mu, r), r))\) is a fuzzy \(r\)-open set in \(X\). Hence
\[
f^{-1}(\mu) \leq f^{-1}(\text{int}(\text{cl}(\mu, r), r)) = \text{int}(f^{-1}(\text{cl}(\mu, r), r), r).
\]

(2) \(\Rightarrow\) (3) Let \(\mu\) be a fuzzy \(r\)-closed set of \(Y\). Then \(\mu^c\) is a fuzzy \(r\)-open set in \(Y\). By (2),
\[
f^{-1}(\mu^c) \leq \text{int}(f^{-1}(\text{cl}(\mu^c, r), r)), r).
\]
Hence
\[
f^{-1}(\mu) = f^{-1}(\mu^c)^c \geq \text{int}(f^{-1}(\text{cl}(\mu^c, r), r))^c = \text{cl}(f^{-1}(\text{int}(\mu, r), r), r).
\]

(3) \(\Rightarrow\) (1) Let \(\mu\) be a fuzzy \(r\)-regular closed set in \(Y\). Then \(\mu\) is a fuzzy \(r\)-closed set in \(Y\) and hence
\[
f^{-1}(\mu) \leq \text{int}(f^{-1}(\text{cl}(\mu, r), r)), r) = \text{int}(f^{-1}(\mu), r).
\]
Thus \(f^{-1}(\mu) = \text{cl}(f^{-1}(\mu), r)\) and hence \(f^{-1}(\mu)\) is a fuzzy \(r\)-closed set in \(X\). Therefore, \(f\) is a fuzzy almost \(r\)-continuous map. \(\square\)

Theorem 4.3. Let \(f : (X, T) \rightarrow (Y, U)\) be a map and \(r \in I_0\). Then \(f\) is fuzzy almost \(r\)-open if and only if \(f(\text{int}(\rho, r)) \leq \text{int}(f(\rho), r)\) for each fuzzy \(r\)-semiclosed set \(\rho\) in \(X\).

Proof. Let \(f\) be fuzzy almost \(r\)-open and \(\rho\) a fuzzy \(r\)-semiclosed set in \(X\). Then \(\text{int}(\rho, r) \leq \text{cl}(\rho, r), r) \leq \rho\). Note that \(\text{cl}(\rho, r)\) is a fuzzy \(r\)-closed set of \(X\). By Theorem 3.6(2), \(\text{int}(\text{cl}(\rho, r), r)\) is a fuzzy \(r\)-regular open set in \(X\). Since \(f\) is fuzzy almost \(r\)-open, \(f(\text{int}(\text{cl}(\rho, r), r))\) is a fuzzy \(r\)-open set in \(X\). Thus we have
\[
f(\text{int}(\rho, r)) \leq f(\text{int}(\text{cl}(\rho, r), r)) = \text{int}(f(\text{int}(\text{cl}(\rho, r), r), r) \leq \text{int}(f(\rho), r).
\]
Conversely, let ρ be a fuzzy r-regular open set of X. Then ρ is fuzzy r-open and hence $\text{int}(\rho, r) = \rho$. Since $\text{int}(\text{cl}(\rho, r), r) = \rho$, ρ is fuzzy r-semiclosed. So

$$f(\rho) = f(\text{int}(\rho, r)) \leq \text{int}(f(\rho), r) \leq f(\rho).$$

Thus $f(\rho) = \text{int}(f(\rho), r)$ and hence $f(\rho)$ is a fuzzy r-open set in Y. \qed

The global property of fuzzy almost r-continuity can be rephrased to the local property in terms of neighborhood and quasi-neighborhood, respectively, in the following two theorems.

Theorem 4.4. Let $f : (X, T) \rightarrow (Y, U)$ be a map and $r \in I_0$. Then f is fuzzy almost r-continuous if and only if for every fuzzy point x_{α} in X and every fuzzy r-neighborhood μ of $f(x_{\alpha})$, there is a fuzzy r-neighborhood of x_{α} such that $x_{\alpha} \in \rho$ and $f(\rho) \leq \text{int}(\text{cl}(\rho, r), r)$.

Proof. Let x_{α} be a fuzzy point in X and μ a fuzzy r-neighborhood of $f(x_{\alpha})$. Then there is a fuzzy r-open set λ in Y such that $f(x_{\alpha}) \in \lambda \leq \mu$. So $x_{\alpha} \in f^{-1}(\lambda) \leq f^{-1}(\mu)$. Since f is fuzzy almost r-continuous,

$$f^{-1}(\lambda) \leq \text{int}(f^{-1}(\text{cl}(\lambda, r)), r) \leq \text{int}(f^{-1}(\text{cl}(\mu, r)), r).$$

Put $\rho = f^{-1}(\text{cl}(\mu, r), r))$. Then $x_{\alpha} \in f^{-1}(\lambda) \leq \text{int}(\rho, r) \leq \rho$. By Theorem 3.6(2), $\text{int}(\text{cl}(\mu, r), r)$ is fuzzy r-regular open. Since f is fuzzy almost r-continuous, $\rho = f^{-1}(\text{cl}(\mu, r), r))$ is fuzzy r-open. Thus ρ is a fuzzy r-neighborhood of x_{α} and

$$f(\rho) = ff^{-1}(\text{int}(\text{cl}(\mu, r), r)) \leq \text{int}(\text{cl}(\mu, r), r).$$

Conversely, let μ be a fuzzy r-regular open set in Y and $x_{\alpha} \in f^{-1}(\mu)$. Then μ is fuzzy r-open and hence μ is a fuzzy r-neighborhood of $f(x_{\alpha})$. By hypothesis, there is a fuzzy r-neighborhood $\rho_{x_{\alpha}}$ of x_{α} such that $x_{\alpha} \in \rho_{x_{\alpha}}$ and $f(\rho_{x_{\alpha}}) \leq \text{int}(\text{cl}(\mu, r), r) = \mu$. Since $\rho_{x_{\alpha}}$ is a fuzzy r-neighborhood of x_{α}, there is a fuzzy r-open set $\lambda_{x_{\alpha}}$ in X such that

$$x_{\alpha} \in \lambda_{x_{\alpha}} \leq \rho_{x_{\alpha}} \leq f^{-1}(\rho_{x_{\alpha}}) \leq f^{-1}(\mu).$$

So we have

$$f^{-1}(\mu) = \bigvee\{x_{\alpha} : x_{\alpha} \in f^{-1}(\mu)\}$$

$$\leq \bigvee\{\lambda_{x_{\alpha}} : x_{\alpha} \in f^{-1}(\mu)\}$$

$$\leq f^{-1}(\mu).$$

Thus $f^{-1}(\mu) = \bigvee\{\lambda_{x_{\alpha}} : x_{\alpha} \in f^{-1}(\mu)\}$ is fuzzy r-open in X and hence f is almost r-continuous. \qed
Theorem 4.5. Let $f : (X, T) \to (Y, U)$ be a map and $r \in I_0$. Then f is a fuzzy almost r-continuous map if and only if for every fuzzy point x_{α} in X and every fuzzy r-quasi-neighborhood μ of $f(x_{\alpha})$, there is a fuzzy r-quasi-neighborhood ρ of x_{α} such that $x_{\alpha}q\rho$ and $f(\rho) \leq \text{int}(\text{cl}(\mu, r), r)$.

Proof. Let x_{α} be a fuzzy point in X and μ a fuzzy r-quasi-neighborhood of $f(x_{\alpha})$. Then there is a fuzzy r-open set λ in Y such that $f(x_{\alpha})q\lambda \leq \mu$. So $x_{\alpha}qf^{-1}(\lambda)$. Since f is fuzzy almost r-continuous,

$$f^{-1}(\lambda) \leq \text{int}(f^{-1}(\text{int}(\text{cl}(\lambda, r))), r) \leq \text{int}(f^{-1}(\text{int}(\text{cl}(\mu, r))), r).$$

Put $\rho = f^{-1}(\text{int}(\text{cl}(\mu, r), r))$. Then $x_{\alpha}qf^{-1}(\lambda) \leq \text{int}(\rho, r) \leq \rho$. So $x_{\alpha}q\rho$. Since $\text{int}(\text{cl}(\mu, r), r)$ is fuzzy r-regular open and f is fuzzy almost r-continuous, $\rho = f^{-1}(\text{int}(\text{cl}(\mu, r), r))$ is fuzzy r-open. Thus ρ is a fuzzy r-quasi-neighborhood of x_{α} and

$$f(\rho) = ff^{-1}(\text{int}(\text{cl}(\mu, r), r)) \leq \text{int}(\text{cl}(\mu, r), r).$$

Conversely, let μ be a fuzzy r-regular open set in Y. If $f^{-1}(\mu) = \emptyset$, then it is obvious. Suppose x_{α} is a fuzzy point in $f^{-1}(\mu)$ such that $\alpha < f^{-1}(\mu)(x)$. Then $\alpha < \mu(f(x))$ and hence $f(x)_{1-\alpha}q\mu$. So μ is a fuzzy r-quasi-neighborhood of $f(x)_{1-\alpha} = f(x_{1-\alpha})$. By hypothesis, there is a fuzzy r-quasi-neighborhood $\rho_{x_{\alpha}}$ of $x_{1-\alpha}$ such that $x_{1-\alpha}q\rho_{x_{\alpha}}$ and $f(\rho_{x_{\alpha}}) \leq \text{int}(\text{cl}(\mu, r), r) = \mu$. Since $\rho_{x_{\alpha}}$ is a fuzzy r-quasi-neighborhood of $x_{1-\alpha}$, there is a fuzzy r-open set $\lambda_{x_{\alpha}}$ in X such that

$$x_{1-\alpha}q\lambda_{x_{\alpha}} \leq \rho_{x_{\alpha}} \leq f^{-1}f(\rho_{x_{\alpha}}) \leq f^{-1}(\mu).$$

Then $\alpha < \lambda_{x_{\alpha}}(x)$ and hence $x_{\alpha} \in \lambda_{x_{\alpha}}$. So

$$f^{-1}(\mu) = \bigvee \{x_{\alpha} : x_{\alpha} \text{ is a fuzzy point in } f^{-1}(\mu) \text{ such that } \alpha < f^{-1}(\mu)(x)\}$$

$$\leq \bigvee \{\lambda_{x_{\alpha}} : x_{\alpha} \text{ is a fuzzy point in } f^{-1}(\mu) \text{ such that } \alpha < f^{-1}(\mu)(x)\}$$

$$\leq f^{-1}(\mu)$$

and hence

$$f^{-1}(\mu) = \bigvee \{\lambda_{x_{\alpha}} : x_{\alpha} \text{ is a fuzzy point in } f^{-1}(\mu) \text{ such that } \alpha < f^{-1}(\mu)(x)\}. $$

Thus $f^{-1}(\mu)$ is fuzzy r-open in X. Therefore f is fuzzy almost r-continuous. □
Theorem 4.6. Let $f : (X, T) \rightarrow (Y, U)$ be fuzzy r-semicontinuous and fuzzy almost r-open. Then f is fuzzy r-irresolute.

Proof. Let μ be fuzzy r-semiclosed in Y. Then $\text{int}(\text{cl}(\mu), r) \leq \mu$. Since f is fuzzy r-semicontinuous,

$$\text{int}(\text{cl}(f^{-1}(\mu), r), r) \leq f^{-1}(\text{cl}(\mu, r)).$$

Thus we have

$$\text{int}(\text{cl}(f^{-1}(\mu), r), r) = \text{int}(\text{int}(\text{cl}(f^{-1}(\mu), r), r), r) \leq \text{int}(f^{-1}(\text{cl}(\mu, r)), r).$$

Since f is fuzzy r-semicontinuous and $\text{cl}(\mu, r)$ is fuzzy r-closed, $f^{-1}(\text{cl}(\mu, r))$ is a fuzzy r-semiclosed set in X. Since f is fuzzy almost r-open,

$$f(\text{int}(f^{-1}(\text{cl}(\mu, r)), r)) \leq \text{int}(ff^{-1}(\text{cl}(\mu, r)), r) \leq \text{int}(\text{cl}(\mu, r), r) \leq \mu.$$

Hence we have

$$\text{int}(\text{cl}(f^{-1}(\mu), r), r) \leq f^{-1}f(\text{int}(\text{cl}(f^{-1}(\mu), r), r)) \leq f^{-1}(\text{cl}(\mu, r)) \leq f^{-1}(\mu).$$

Thus $f^{-1}(\mu)$ is fuzzy r-semiclosed in X and hence f is fuzzy r-irresolute. □

Remark 4.7. Clearly a fuzzy r-continuous map is a fuzzy almost r-continuous map. That the converse need not be true is shown by the following example. Also, the example shows that a fuzzy almost r-continuous map need not be a fuzzy r-semicontinuous map.

Example 4.8. Let $X = I$ and μ_1, μ_2 and μ_3 be fuzzy sets in X defined by

$$\mu_1(x) = x;$$
$$\mu_2(x) = 1 - x;$$
and

$$\mu_3(x) = \begin{cases} x & \text{if } 0 \leq x \leq \frac{1}{2}, \\ 0 & \text{if } \frac{1}{2} \leq x \leq 1. \end{cases}$$
Define $T_1 : I^X \rightarrow I$ and $T_2 : I^X \rightarrow I$ by

\[
T_1(\mu) = \begin{cases}
1 & \text{if } \mu = \tilde{0}, \tilde{1} \\
\frac{1}{2} & \text{if } \mu = \mu_1, \mu_2, \mu_1 \lor \mu_2, \mu_1 \land \mu_2 \\
0 & \text{otherwise},
\end{cases}
\]

and

\[
T_2(\mu) = \begin{cases}
1 & \text{if } \mu = \tilde{0}, \tilde{1} \\
\frac{1}{2} & \text{if } \mu = \mu_1, \mu_2, \mu_3, \mu_1 \lor \mu_2, \mu_1 \land \mu_2 \\
0 & \text{otherwise}.
\end{cases}
\]

Then clearly T_1, T_2 are fuzzy topologies on X. Consider the identity map $1_X : (X, T_1) \rightarrow (X, T_2)$. It is clear that $\mu_1, \mu_2, \mu_1 \lor \mu_2$ and $\mu_1 \land \mu_2$ are fuzzy $\frac{1}{2}$-regular open in (X, T_2) while μ_3 is not. Noting that $T_1(\mu_3) = 0$, it is obvious that 1_X is a fuzzy $\frac{1}{2}$-almost continuous map which is not a fuzzy $\frac{1}{2}$-continuous map. Also, because $\tilde{0}$ is the only fuzzy $\frac{1}{2}$-open set contained in μ_3, $\mu_3 = 1_X^{-1}(\mu_3)$ is not a fuzzy $\frac{1}{2}$-semiopen set in (X, T_1) and hence 1_X is not a fuzzy $\frac{1}{2}$-semicontinuous map.

Example 4.9. A fuzzy r-semicontinuous map need not be a fuzzy almost r-continuous map.

Let (X, T) be a fuzzy topological space as described in Example 3.4 and let $f : (X, T) \rightarrow (X, T)$ be defined by $f(x) = \frac{x}{2}$. Simple computations give $f^{-1}(\tilde{0}) = \tilde{0}, f^{-1}(\tilde{1}) = \tilde{1}, f^{-1}(\mu_1) = 0$ and $f^{-1}(\mu_2) = \mu_1^\circ = f^{-1}(\mu_1 \lor \mu_2)$. Since $\text{cl}(\mu_2, \frac{1}{2}) = \mu_1^\circ, \mu_1^\circ$ is a fuzzy $\frac{1}{2}$-semiopen set and hence f is a fuzzy $\frac{1}{2}$-semicontinuous map. But $f^{-1}(\mu_2) = \mu_1^\circ$ and

\[
\text{int}(f^{-1}(\text{int}(\text{cl}(\mu_2, \frac{1}{2})), \frac{1}{2})), \frac{1}{2}) = \text{int}(f^{-1}(\text{int}(\mu_1^\circ, \frac{1}{2})), \frac{1}{2})
\]

\[
= \text{int}(f^{-1}(\mu_2), \frac{1}{2})
\]

\[
= \text{int}(\mu_1^\circ, \frac{1}{2}) = \mu_2.
\]

Thus $f^{-1}(\mu_2) \not\subseteq \text{int}(f^{-1}(\text{int}(\text{cl}(\mu_2, \frac{1}{2})), \frac{1}{2})), \frac{1}{2})$ and hence f is not a fuzzy almost $\frac{1}{2}$-continuous map.

From Example 4.8 and 4.9 we have the following result.

Theorem 4.10. Fuzzy r-semicontinuity and fuzzy almost r-continuity are independent notions.
Definition 4.11. Let \((X, T)\) be a fuzzy topological space and \(r \in I_0\). Then \((X, T)\) is called a fuzzy \(r\)-semiregular space if each fuzzy \(r\)-open set in \(X\) is a union of fuzzy \(r\)-regular open sets.

Theorem 4.12. Let \(r \in I_0\) and \(f : (X, T) \to (Y, U)\) be a map from a fuzzy topological space \(X\) to a fuzzy \(r\)-semiregular space \(Y\). Then \(f\) is fuzzy almost \(r\)-continuous if and only if \(f\) is fuzzy \(r\)-continuous.

Proof. Due to Remark 4.7, it suffices to show that if \(f\) is fuzzy almost \(r\)-continuous then it is fuzzy \(r\)-continuous. Let \(\mu\) be a fuzzy \(r\)-open set in \(Y\). Since \((Y, U)\) is a \(r\)-semiregular space, \(\mu = \bigvee \mu_i\), where \(\mu_i\)'s are fuzzy \(r\)-regular open sets in \(Y\). Then since \(f\) is a fuzzy almost \(r\)-continuous map, \(f^{-1}(\mu_i)\) is a fuzzy \(r\)-open set for each \(i\). So

\[T(f^{-1}(\mu)) = T(f^{-1}(\bigvee \mu_i)) = T(\bigvee f^{-1}(\mu_i)) \geq \bigwedge T(f^{-1}(\mu_i)) \geq r. \]

Thus \(f^{-1}(\mu)\) is fuzzy \(r\)-open in \(X\) and hence \(f\) is a fuzzy \(r\)-continuous map. \(\square\)

Theorem 4.13. Let \(f : (X, T) \to (Y, U)\) be a map from a fuzzy topological space \(X\) to another fuzzy topological space \(Y\) and \(r \in I_0\). Then \(f\) is fuzzy almost \(r\)-continuous \((r\)-open, \(r\)-closed) if and only if \(f : (X, T_r) \to (Y, U_r)\) is fuzzy almost continuous \((open, closed)\).

Proof. Straightforward. \(\square\)

Theorem 4.14. Let \(f : (X, T) \to (Y, U)\) be a map from a Chang’s fuzzy topological space \(X\) to another Chang’s fuzzy topological space \(Y\) and \(r \in I_0\). Then \(f\) is fuzzy almost continuous \((open, closed)\) if and only if \(f : (X, T^r) \to (Y, U^r)\) is fuzzy almost \(r\)-continuous \((r\)-open, \(r\)-closed).

Proof. Straightforward. \(\square\)

References

Fuzzy r-regular open sets and fuzzy almost r-continuous maps

Seok Jong Lee, Department of Mathematics, Chungbuk National University, Cheongju 361-763, Korea
E-mail: sjlee@cbnu.ac.kr

Eun Pyo Lee, Department of Mathematics, Seonam University, Namwon 590-711, Korea
E-mail: eplee@tiger.seonam.ac.kr