SELF-ADJOINT INTERPOLATION FOR OPERATORS IN TRIDIAGONAL ALGEBRAS

JOO HO KANG AND YOUNG SOO JO

Abstract. Given operators X and Y acting on a Hilbert space H, an interpolating operator is a bounded operator A such that $AX = Y$. An interpolating operator for n-operators satisfies the equation $AX_i = Y_i$ for $i = 1, 2, \ldots, n$. In this article, we obtained the following: Let $X = (x_{ij})$ and $Y = (y_{ij})$ be operators in $B(H)$ such that $x_{i\sigma(i)} \neq 0$ for all i. Then the following statements are equivalent.

1. Introduction

Let \mathcal{C} be a collection of operators acting on a Hilbert space \mathcal{H} and let X and Y be operators acting on \mathcal{H}. An interpolation question for \mathcal{C} asks for which X and Y is there a bounded operator T in \mathcal{C} such that $TX = Y$. A variation, the ‘n-operator interpolation problem’, asks for an operator T such that $TX_i = Y_i$ for fixed finite collections \{\$X_1, X_2, \ldots, X_n\}$ and \{\$Y_1, Y_2, \ldots, Y_n\$\}.

In this article, we investigate self-adjoint interpolation problems in tridiagonal algebras: Given operators X and Y acting on a Hilbert space \mathcal{H}, when does there exists a self-adjoint operator A in a tridiagonal algebra such that $AX = Y$?
First, we establish some notations and conventions. A commutative subspace lattice \mathcal{L}, or CSL L is a strongly closed lattice of pairwise-commuting projections acting on a Hilbert space H. We assume that the projections 0 and I lie in L. We usually identify projections and their ranges, so that it makes sense to speak of an operator as leaving a projection invariant. If \mathcal{L} is CSL, $\text{Alg}\mathcal{L}$ is called a CSL-algebra. The symbol $\text{Alg}\mathcal{L}$ is the algebra of all bounded linear operators on H that leave invariant all the projections in \mathcal{L}. Let \mathbb{N} be the set of all natural numbers and let \mathbb{C} be the set of all complex numbers. Let $z \in \mathbb{C}$. Then \overline{z} means the complex conjugate of z.

2. Results

Let H be a separable complex Hilbert space with a fixed orthonormal basis $\{e_1, e_2, \cdots \}$. Let x_1, x_2, \cdots, x_n be vectors in H. Then $[x_1, x_2, \cdots, x_n]$ means the closed subspace generated by the vectors x_1, x_2, \cdots, x_n. Let M be a subset of a Hilbert space H. Then \overline{M} means the closure of M and \overline{M}^\perp the orthogonal complement of M. Let \mathcal{L} be a subspace lattice of orthogonal projections generated by the subspaces $[e_{2k-1}], [e_{2k-1}, e_{2k}, e_{2k+1}]$ ($k = 1, 2, \cdots$). Then the algebra $\text{Alg}\mathcal{L}$ is called a tridiagonal algebra which was introduced by F. Gilfeather and D. Larson [3]. These algebras have been found to be useful counterexamples to a number of plausible conjectures. Recently, such algebras have been found to be use in physics, in electrical engineering and in general system theory.

Let A be the algebra consisting of all bounded operators acting on H of the form

$$
\begin{pmatrix}
* & * \\
* & * & * \\
* & * \\
& & & & \\
& & \ddots
\end{pmatrix}
$$

with respect to the orthonormal basis $\{e_1, e_2, \cdots \}$, where all non-starred entries are zero. It is easy to see that $\text{Alg}\mathcal{L}=A$. Let $D=\{A: A$ is diagonal in $B(H) \}$. Then D is a masa of $\text{Alg}\mathcal{L}$ and $D=(\text{Alg}\mathcal{L})\cap (\text{Alg}\mathcal{L})^*$, where

$$(\text{Alg}\mathcal{L})^* = \{A^* : A \in \text{Alg}\mathcal{L}\}.$$

In this paper, we use the convention $\frac{0}{0}=0$, when necessary.

From now, let $\sigma: \mathbb{N} \to \mathbb{N}$ be a mapping in this paper.
Theorem 1. Let \(X = (x_{ij}) \) and \(Y = (y_{ij}) \) be operators in \(\mathcal{B}(\mathcal{H}) \) such that \(x_{i\sigma(i)} \neq 0 \) for all \(i \). Then the following statements are equivalent.

1. There exists an operator \(A \) in \(\text{Alg}\mathcal{L} \) such that \(AX = Y \), every \(E \) in \(\mathcal{L} \) reduces \(A \) and \(A \) is a self-adjoint operator.

2. \[
\sup \left\{ \frac{\| \sum_{i=1}^{n} E_i Y f_i \|}{\| \sum_{i=1}^{n} E_i X f_i \|} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} < \infty
\]
\(x_{i\sigma(i)} \) is real for all \(i \).

Proof. (1) \(\Rightarrow\) (2): Since \(E \) reduces \(A \) and \(AX = Y \), \(AEX = EY \) for every \(E \) in \(\mathcal{L} \). So \(A(\sum_{i=1}^{n} E_i X f_i) = \sum_{i=1}^{n} E_i Y f_i \) and hence \(\| \sum_{i=1}^{n} E_i Y f_i \| \leq \| A \| \| \sum_{i=1}^{n} E_i X f_i \| \), \(n \in \mathbb{N}, E_i \in \mathcal{L} \) and \(f_i \in \mathcal{H} \). If \(\| \sum_{i=1}^{n} E_i X f_i \| \neq 0 \), then \(\frac{\| \sum_{i=1}^{n} E_i Y f_i \|}{\| \sum_{i=1}^{n} E_i X f_i \|} \leq \| A \| \).

Hence \(\sup \left\{ \frac{\| \sum_{i=1}^{n} E_i Y f_i \|}{\| \sum_{i=1}^{n} E_i X f_i \|} : n \in \mathbb{N}, E_i \in \mathcal{L}, \text{ and } f_i \in \mathcal{H} \right\} < \infty \). Since every \(E \) in \(\mathcal{L} \) reduces \(A \), \(A \) is a diagonal operator. Let \(A = (a_{ii}) \). Since \(AX = Y \), \(y_{ij} = a_{ii} x_{ij} \) for all \(i \) and all \(j \). Since \(A \) is a self-adjoint operator, \(x_{i\sigma(i)} \) is real for all \(i \).

(2) \(\Rightarrow\) (1): If \(\sup \left\{ \frac{\| \sum_{i=1}^{n} E_i Y f_i \|}{\| \sum_{i=1}^{n} E_i X f_i \|} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} < \infty \), then without loss of generality, we may assume that

\[
\sup \left\{ \frac{\| \sum_{i=1}^{n} E_i Y f_i \|}{\| \sum_{i=1}^{n} E_i X f_i \|} : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} = 1.
\]

So, \(\| \sum_{i=1}^{n} E_i Y f_i \| \leq \| \sum_{i=1}^{n} E_i X f_i \| \), \(n \in \mathbb{N}, E_i \in \mathcal{L} \) and \(f_i \in \mathcal{H} \) \(\cdots(*)\).

Let \(\mathcal{M} = \left\{ \sum_{i=1}^{n} E_i X f_i : n \in \mathbb{N}, E_i \in \mathcal{L} \text{ and } f_i \in \mathcal{H} \right\} \). Then \(\mathcal{M} \) is a linear manifold.

Define \(A : \mathcal{M} \rightarrow \mathcal{H} \) by \(A(\sum_{i=1}^{n} E_i X f_i) = \sum_{i=1}^{n} E_i Y f_i \). Then \(A \) is well-defined by \((*)\). Extend \(A \) to \(\overline{\mathcal{M}} \) by continuity. Define \(A|_{\overline{\mathcal{M}}} = 0 \). Then \(\| A \| \leq 1 \) and \(AX = Y \). \(AE(\sum_{i=1}^{n} E_i X f_i) = A(\sum_{i=1}^{n} E_i E_i X f_i) = \sum_{i=1}^{n} EE_i Y f_i \) and \(EA(\sum_{i=1}^{n} E_i X f_i) = E(\sum_{i=1}^{n} E_i Y f_i) = \sum_{i=1}^{n} EE_i Y f_i \).

And \(EA(g) = E(0) = 0 \) and \(AE(g) = 0 \) for \(g \) in \(\overline{\mathcal{M}} \) since \(\langle E_g, \sum_{i=1}^{n} E_i X f_i \rangle = \langle g, \sum_{i=1}^{n} E_i E_i X f_i \rangle = 0 \). Hence every \(E \) in \(\mathcal{L} \) reduces \(A \). Therefore, \(A \) is a self-adjoint operator. Let \(A = (a_{ii}) \). Since \(AX = Y \), \(y_{ij} = a_{ii} x_{ij} \) for all \(i \) and all \(j \). Since \(x_{i\sigma(i)} \) is real for all \(i \), \(A \) is a self-adjoint operator. \(\square \)
Theorem 2. Let $X_p = (x_{ij}^{(p)})$ and $Y_p = (y_{ij}^{(p)})$ be operators in $B(H)$ ($p = 1, 2, \cdots, n$) such that $x_{i\sigma(i)}^{(q)} \neq 0$ for some q. Then the following statements are equivalent.

1. There exists an operator A in $\text{Alg} L$ such that $AX_p = Y_p$ ($p = 1, 2, \cdots, n$), every E in L reduces A and A is a self-adjoint operator.

2. \[\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} y_{i} f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{i} f_{k,i} \|} : m_i \in \mathbb{N}, l \leq n, E_{k,i} \in L \text{ and } f_{k,i} \in H \right\} < \infty \text{ and } x_{i,\sigma(i)}^{(q)} y_{i,\sigma(i)}^{(q)} \text{ is real for all } i = 1, 2, \cdots.\]

Proof. We assume the condition (2) holds. Then, without loss of generality, we may assume that \[\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} y_{i} f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{i} f_{k,i} \|} : m_i \in \mathbb{N}, l \leq n, E_{k,i} \in L \text{ and } f_{k,i} \in H \right\} = 1. \]

Then \[\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} y_{i} f_{k,i} \| \leq \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{i} f_{k,i} \| \cdots \cdots (*). \]

Let \[M = \left\{ \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{i} f_{k,i} : l \leq n, m_i \in \mathbb{N}, E_{k,i} \in L \text{ and } f_{k,i} \in H \right\}. \]

Then M is a linear manifold. Define $A : M \to H$ by $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{i} f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} y_{i} f_{k,i}$. Then A is well-defined by (*). Extend A to M by continuity. Define $A|_{M^\perp} = 0$. Clearly $AX_p = Y_p$ and we know that $\| A|_{M} \| \leq 1$ ($p = 1, 2, \cdots, n$). For $m_i \in \mathbb{N}, l \leq n, E_{k,i} \in L$ and $f_{k,i} \in H$, \[AE \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} x_{i} f_{k,i} \right) = A \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} x_{i} f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} y_{i} f_{k,i}, \]
\[EA \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \right) = E \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} Y_{i} f_{k,i}. \]

For every \(g \) in \(\overline{\mathcal{M}} \), \(E A g = E 0 = 0 \) and \(A E g = 0 \) since \(\langle E g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \rangle = \langle g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E E_{k,i} X_{i} f_{k,i} \rangle = 0 \). So every \(E \) in \(\mathcal{L} \) reduces \(A \). Therefore, \(A \) is diagonal. Let \(A = (a_{ii}) \). Since \(A X_p = Y_p, y_{ij}^{(p)} = a_{ii} x_{ij}^{(p)} \) for all \(i, j \), and \(p = 1, 2, \cdots, n \). Since \(x_{i,\sigma(i)}^{(q)} y_{i,\sigma(i)}^{(q)} \) is real for all \(i = 1, 2, \cdots, n \), \(A \) is a self-adjoint operator.

Conversely, if the condition (1) holds, then \(E A X_i = A E X_i = E Y_i \) for every \(E \) in \(\mathcal{L} \) \((i = 1, 2, \cdots, n) \). So \(A E X_i = E Y_i \) for every \(E \) in \(\mathcal{L} \) and every \(f \) in \(\mathcal{H} \) \((i = 1, 2, \cdots, n) \). Thus \(A (\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \), for \(m_i \in \mathbb{N}, l \leq n, E_{k,i} \in \mathcal{L} \) and \(f_{k,i} \in \mathcal{H} \). So

\[
\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \| \leq \| A (\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i}) \| \\
\leq \| A \| \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \|.
\]

If \(\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \| \neq 0 \), then

\[
\frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \|} \leq \| A \|.
\]

Hence, \(\sup \left\{ \left\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \right\|: l \leq n, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} \leq \| A \| \).

Since every \(E \) in \(\mathcal{L} \) reduces \(A \), \(A \) is diagonal. Let \(A = (a_{ii}) \). Since \(A X_p = Y_p, y_{ij}^{(p)} = a_{ii} x_{ij}^{(p)} \) for all \(i, j \), and \(p \). Since \(A \) is a self-adjoint operator, \(x_{i,\sigma(i)}^{(q)} y_{i,\sigma(i)}^{(q)} \) is real for all \(i = 1, 2, \cdots \).

Theorem 3. Let \(X_p = (x_{ij}^{(p)}) \) and \(Y_p = (y_{ij}^{(p)}) \) be in \(\mathcal{B}(\mathcal{H}) \) \((p = 1, 2, \cdots) \) such that \(x_{i,\sigma(i)}^{(q)} \neq 0 \) for some fixed \(q \) and for all \(i \). Then the following statements are equivalent.
There exists an operator A in $\text{Alg}\mathcal{L}$ such that $AX_p = Y_p \ (p = 1, 2, \cdots)$, every E in \mathcal{L} reduces A and A is a self-adjoint operator.

(2) \[\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \|} : m_i, l \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} < \infty \]
and $x^{(q)}_{i,\sigma(i)}(q)$ is real for all $i = 1, 2, \cdots$.

Proof. If \[\sup \left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \|} : m_i, l \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} = 1. \]
Then $\mathcal{M} = \left\{ \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} : m_i, l \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\}$.

Let \mathcal{M} is a linear manifold. Define $A : \mathcal{M} \rightarrow \mathcal{H}$ by $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i}$. Then A is well-defined by (1). Extend A to $\overline{\mathcal{M}}$ by continuity. Define $A|_{\overline{\mathcal{M}}^\perp} = 0$. Clearly $AX_p = Y_p$ and we know that $\|A|_{\overline{\mathcal{M}}} \| \leq 1 \ (p = 1, 2, \cdots)$.

$$AE \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \right) = A \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} EE_{k,i} X_{i} f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} EE_{k,i} Y_{i} f_{k,i}$$

and

$$EA \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} X_{i} f_{k,i} \right) = E \left(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i} Y_{i} f_{k,i} \right) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} EE_{k,i} Y_{i} f_{k,i}.$$
For every g in \mathcal{M}^\perp, $EA(g) = E(0) = 0$ and $AE(g) = 0$ since

$$\langle Eg, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \rangle = \langle g, \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \rangle = 0.$$

So every E in \mathcal{L} reduces A. Therefore, A is diagonal. Let $A = (a_{ii})$. Since $AX_p = Y_p$, $y_{ij}^{(p)} = a_{ii}x_{ij}^{(p)}$ for all i, j, and $p = 1, 2, \cdots$. Since $x_{i,\sigma(i)}^{(q)}y_{i,\sigma(i)}^{(q)}$ is real for all $i = 1, 2, \cdots$, A is a self-adjoint operator.

Conversely, if $AX_i = Y_i$, then $EAX_i = AEY_i$ for every E in \mathcal{L} ($i = 1, 2, \cdots$). So $AEY_i f = EY_i f$ for every E in \mathcal{L} and every f in \mathcal{H} ($i = 1, 2, \cdots$). Thus $A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i}) = \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i}$, $m_i, l \in \mathbb{N}$, $E_{k,i} \in \mathcal{L}$ and $f_{k,i} \in \mathcal{H}$. So

$$\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \| \leq \| A(\sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i}) \| \leq \| A \| \| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \|.$$

If $\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \| \neq 0$, then

$$\frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \|} \leq \| A \|.$$

Hence sup \(\left\{ \frac{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \|}{\| \sum_{i=1}^{l} \sum_{k=1}^{m_i} E_{k,i}X_{i}f_{k,i} \|} : l, m_i \in \mathbb{N}, E_{k,i} \in \mathcal{L} \text{ and } f_{k,i} \in \mathcal{H} \right\} \leq \| A \|.$$

Since every E in \mathcal{L} reduces A, A is diagonal. Let $A = (a_{ii})$. Since $AX_p = Y_p$, $y_{ij}^{(p)} = a_{ii}x_{ij}^{(p)}$ for all p, i, and j. Since A is a self-adjoint operator, $x_{i,\sigma(i)}^{(q)}y_{i,\sigma(i)}^{(q)}$ is real for all $i = 1, 2, \cdots$. \[\Box\]

References

Joo Ho Kang, Department of Mathematics, Taegu University, Taegu 713-714, Korea
E-mail: jh.kang@biho.taegu.ac.kr

Young Soo Jo, Department of Mathematics, Keimyung University, Taegu 704-701, Korea
E-mail: ysjo@knucc.keimyung.ac.kr