ON SOME PROPERTIES OF BOUNDED X^*-VALUED FUNCTIONS

Bok Dong Yoo

Abstract. Suppose that X is a Banach space with continuos dual $X^{**}, (\Omega, \Sigma, \mu)$ is a finite measure space. $f : \Omega \to X^*$ is a weakly measurable function such that $x^{**}f \in L_1(\mu)$ for each $x^{**} \in X^{**}$ and $T_f : X^{**} \to L_1(\mu)$ is the operator defined by $T_f(x^{**}) = x^{**}f$. In this paper we study the properties of bounded X^*-valued weakly measurable functions and bounded X^*-valued weak*-measurable functions.

1. Introduction

Suppose that X is a Banach space with continuos dual $X^{**}, (\Omega, \Sigma, \mu)$ is a finite measure space. $f : \Omega \to X^*$ is a weakly measurable function such that $x^{**}f \in L_1(\mu)$ for each $x^{**} \in X^{**}$ and $T_f : X^{**} \to L_1(\mu)$ is the operator defined by $T_f(x^{**}) = x^{**}f$.

In this paper we study the properties of bounded X^*-valued weakly measurable functions and bounded X^*-valued weak*-measurable functions.

Throughout the paper X will denote the unit ball of X by B_X. An operator $T_f : X^{**} \to L_1(\mu)$ is said to be (w^*, norm)-continuous provided that net $T_f(x_j^{**})$ converges to $T_f(x^{**})$ in the norm topology of $L_1(\mu)$ whenever (x_j^{**}) is a net which converges to x^{**} in the weak* topology of X^{**}.

A function : $(\Omega, \Sigma, \mu) \to X^*$ is weakly measurable if $x^{**}f$ is measurable for every $x^{**} \in X^{**}$. A function : $(\Omega, \Sigma, \mu) \to X^*$ is weak* measurable if $x f$ is measurable for every $x \in X$.

An operator $T_f : X^{**} \to L_1(\mu)$ which is defined by $T_f(x^{**}) = x^{**}f$ is weakly compact it the norm closure of $T_f(B_X^{**})$ is weakly compact. A subset K of $L_1(\mu)$ is called uniformly integrable if $\lim_{\mu(E) \to 0} \int_E |f| d\mu = 0$ uniformly in $f \in K$.

1991 Mathematics Subject Classification. Primary 46B20.
2. Main Theorems

Theorem 1. If \(f : \Omega \to X^* \) is bounded weakly measurable function, then \(f \) is \((w^*, \text{norm})\)-sequentially continuous.

Proof. If \(x_n^{**} \) converges to \(x^{**} \) in the weak* topology of \(X^{**} \), then \(x_n^{**} f \) converges to \(x^{**} f \) pointwise. Since \(x_n^{**} \) converges to \(x^* \) in the weak* topology of \(X^{**} \), by the principle of uniform boundedness \(\sup_{n \to \infty} ||x_n^{**}|| < \infty \) and by hypothesis there exists \(M > 0 \) such that \(\sup_{x \in \Omega} ||f|| < M \).

Since \(\|x_n^*\| \leq \sup \|x_n^{**}\| \leq M \), by Lebesgue’s bounded convergence theorem

\[
\lim_{n \to \infty} \|x_n^{**} f - x^{**} f\| = \lim_{n \to \infty} \int_{\Omega} |x_n^{**} f - x^{**} f| d\mu = 0
\]

Thus \(T_f \) is \((w^*, \text{norm})\)-sequentially continuous. \(\square \)

Lemma. A subset of \(L_1(\mu) \) be relatively weakly compact if and only if it is bounded and uniformly integrable.

Proof. Let \(K \subset L_1(\mu) \) be relatively weakly compact. Then \(K \) is bounded and if \((f_n) \) is a sequence in \(K \), then \((f_n) \) has a weakly convergent subsequence.

Hence there is a subsequence \((f_{nj}) \) such that \(\lim_{j} \int_{\infty} E f_{nj} d\mu \) exists for all \(E \in \Sigma \).

It follows immediately that \(K \) is uniformly integrable.

Conversely, suppose \(K \) is bounded and uniformly integrable. Let \((f_n) \) be a sequence in \(K \). Then there is a countable field \(F \) such that \(f_n \) is measurable relative to the \(\sigma \)-field \(\Sigma_1 \), generated by \(F \).

By diagonal procedure, select a subsequence \((f_{nj}) \) such that \(\lim_{j} \int_{\infty} E f_{nj} d\mu = F(E) \) exists for all \(E \in F \).

Since \(K \) is uniformly integrable, there exists \(f \in L_1(\Sigma_1, \mu) \) such that

\[
\lim_{j} \int_{\infty} f_{nj} g d\mu = \int_{\infty} f g d\mu
\]

for each \(g \in L_{\infty}(\Sigma_1, \mu) \). Hence \(f_{nj} \to f \) is weakly in \(L_1(\Sigma_1, \mu) \), But \(f_{nj} \to f \) is weakly \(L_1(\mu) \), Hence \(K \) is relatively compact. \(\square \)

Theorem 2. If \(f : \Omega \to X^* \) is bounded weakly measurable function, then \(T_f : X^{**} \to L_1(\mu) \), is locally compact operator.
Proof. Since $f : \Omega \to X^*$ is bounded there exists a number M such that $\sup \{|f(x)|; x \in \Omega\} \leq M$. If x^{**} belongs to $B_{X^{**}}^*$,
\[||T_f(x^{**})|| = \int_{\Omega} |x^{**}f|d\mu = \int_{\Omega} |f(x)|d\mu = M\mu(\Omega). \]
Hence $T_f(B_{X^{**}}^*)$ is norm bounded. If $\varepsilon > 0, \mu(B) < \frac{\varepsilon}{M}$ then
\[\int_{E} ||f||d\mu \leq M\mu(E) < \varepsilon \text{ and if } \mu(E) < \frac{\varepsilon}{M} \text{ and } x^{**} \in B_{X^{**}}^*, \]
\[\int_{E} |T_f(x^{**})|d\mu = \int_{E} |x^{**}f|d\mu \leq \int_{E} ||f||d\mu < \varepsilon \]
Hence $T_f(B_{X^{**}}^*)$ is uniformly integrable. By Dunford theorem, $T_f(B_{X^{**}}^*)$ is relatively weakly compact. Therefore $T_f : X^{**} \to L(\mu)$ is weakly compact operator. □

Theorem 3. Suppose that (Ω, Σ, μ) is a measure space, $f_n : \Omega \to X^*$ is bounded weak*-measurable for each $n \in N$, $\{f_n : n \in N\}$ is uniformly bounded and there is a real valued function g_x on Ω such that $xf_n \to gx$ a.e.$[\mu]$. Then there is an $f : \Omega \to X^*$ such that $xf = gx$ a.e.$[\mu]$ for each $x \in X$.

Proof. Suppose the hypothesis are satisfied. Let M_n be a sup$\{||f_n(x^*)|| : x^* \in X^*\}$, since $\{f_n : n \in N\}$ is uniformly bounded, $M = \sup M_n$.

Let $K_M(0)$ denote the closed ball of radius M with center at the origin of X^*, the $K_M(0)$ is weak* compact and $(K_M(0), w^*)^\Omega$, there are a subset (f_{n_k}) of (f_n) and a function $f : \Omega \to K_M(0)$ such that (f_{n_k}) converges to f pointwise in the w^*-topology. But the $xf = gx$ a.e.$[\mu]$ for each $x \in X$. □

References

(Bok Dong Yoo) National Tax College, Suwon, 440-747, Korea