AN EXISTENCE OF THE INERTIAL MANIFOLD FOR NEW DOMAINS

HYUKJIN KWEEN

ABSTRACT. In this paper, we extend a Theorem of Mallet-Paret and Sell for the existence of an inertial manifold for a scalar-valued reaction diffusion equation to new domains $\Omega_n \subset \mathbb{R}^n$, $n = 2, 3$.

1. Introduction

Consider a specific class of scalar-valued reaction diffusion equations of the form

(1.1) $u_t = \nu \Delta u + f(u)$, $u \in \Omega$

where $\nu > 0$ is viscosity parameter and $f : \mathbb{R} \to \mathbb{R}$ is sufficiently smooth. We are concerned with the existence of inertial manifold of the equation (1.1) on the following type of domains

(1.2) $\Omega = (\text{equilateral triangle of side } \pi)$

with Neumann boundary conditions. This problem was studied by Mallet-Paret and Sell (1988) with more general nonlinear function f for 2-dimensional rectangular domains and 3-dimensional cubic domain $\Omega_3 = (0, 2\pi)^3$. For their result, they introduce the new property, the Principle of Spatial Averaging (PSA), which plays important role in their theory.

The purpose of this paper is to extend their result into the domains Ω given in (1.2) by restricting a class of nonlinear functions f. For doing this, we introduce an abstract result established by Mallet-Paret and Sell and then we will show, under suitable conditions, that there exists an inertial manifold for the equation (1.1).

Received May 1, 1996.
1991 AMS Subject Classification: 35P20, 34C29, 35K57.
Key words: dissipative system, inertial manifold, reaction diffusion, Principle of Spatial Averaging
2. An Abstract Invariant Manifold Theory

For convenience we present here some ideas developed in Mallet-Paret and Sell (1988) throughout this section.

Let H be a Hilbert space with an inner product $\langle \cdot, \cdot \rangle$ and a norm $|| \cdot ||$, and let P be a finite dimensional subspace of H with orthogonal projection P, and let Q be the orthogonal complement with complementary projection $Q = I - P$.

Writing $u \in H$ as $u = (p, q)$ where

$$p = Pu \in PH \equiv P, \quad q = Qu \in QH \equiv Q,$$

we consider an abstract differential equation

$$\begin{align*}
p' &= F(p, q), \\
q' &= -Aq + G(p, q).
\end{align*}$$

(2.1)

We assume A is a closed selfadjoint linear operator on Q with dense domain $D(A) \subset Q$. We assume further that $-A$ generates a C^0-semigroup e^{-At} in Q for $t > 0$, and that A has a compact resolvent on Q. The (nonlinear) functions

$$F : H \rightarrow P, \quad G : H \rightarrow Q$$

are assumed to be locally Lipschitz continuous in H. These assumptions on $A, F,$ and G are standing assumptions throughout this section. Under these assumptions, the system (2.1) with initial condition $u_0 = (p_0, q_0) \in H$ has a unique, maximally defined solution $u(t) = u(t, u_0) = (p(t, p_0, q_0), q(t, p_0, q_0))$ on some interval $[0, \omega)$ where $\omega = \omega(p_0, q_0) \in (0, \infty]$.

Furthermore, the existence of invariant manifold M for the system (2.1) can be proved under the following five hypotheses.

(I) (Regularity Condition) There exist constants R_1 and R_2 such that both F and G are C^1 in the convex set $\mathcal{A} \times \mathcal{C}$, where

$$\begin{align*}
\mathcal{A} &= \{p \in \mathcal{P} : ||p|| \leq R_1\}, \\
\mathcal{C} &= \{q \in D(A) \subset Q : ||Aq|| \leq R_2\}.
\end{align*}$$

(II) (Dissipative Condition) If $p \in Cl(\mathcal{P}\setminus \mathcal{A})$, then

$$\langle p, F(p, 0) \rangle < 0 \quad \text{and} \quad G(p, 0) = 0.$$
(III) (Sobolev Condition) If \(p_0 \in \mathcal{A} \) and \(t_0 > 0 \) are such that \(p(t, p_0, 0) \in \mathcal{A} \) holds in \([0, t_0]\), then one also has \(q(t, p_0, 0) \in \mathcal{C} \) in \([0, t_0]\).

(IV) (Linear Stability Condition) One has
\[
\langle \rho, \sigma \rangle = \frac{1}{2} \| \sigma \|^2 - \frac{1}{2} \| \rho \|^2
\]
and
\[
\langle \rho', \sigma' \rangle = -\langle \rho, \sigma \rangle - \langle \rho', \rho \rangle,
\]
for some \(\Lambda > 2\gamma \), where \(\gamma = \sup[\|DG(p, q)\|_{\mathcal{L}} : (p, q) \in \mathcal{A} \times \mathcal{C}] \), and \(\mathcal{L} = \mathcal{L}(H, Q) \).

(V) (Uniform Cone Condition) With
\[
V \equiv \frac{1}{2} \| \sigma \|^2 - \frac{1}{2} \| \rho \|^2
\]
and
\[
V' \equiv \langle \sigma, \sigma' \rangle - \langle \rho, \rho' \rangle,
\]
there exists a \(\xi > 0 \) such that \(V' \leq -\xi \) whenever \((p, q) \in \mathcal{A} \times \mathcal{C} \) and \(\| \rho \| = \| \sigma \| \neq 0 \), where \(\rho, \sigma \in \mathcal{P}, \sigma \in \mathcal{D} \subset \mathcal{Q} \), and \(\rho' \) and \(\sigma' \) are given by the linear variational equation form of (2.1), i.e.,
\[
\rho' = DF(p, q)(\rho, \sigma),
\]
\[
\sigma' = -A\sigma + DG(p, q)(\rho, \sigma).
\]

We refer to Mallet-Paret and Sell (1988) for a better understanding of the analytical and geometrical significances of these five assumptions.

Before we state the Theorem we introduce the following notation: Let \(\Phi : \mathcal{P} \to \mathcal{Q} \) be a function. The graph and the support of \(\Phi \) are
\[
\text{graph}(\Phi) = \{(p, \Phi(p)) : p \in \mathcal{P}\},
\]
\[
\text{supp}(\Phi) = \text{Cl}\{p \in \mathcal{P} : \Phi(p) \neq 0\}.
\]
Let \(\mathcal{E} \) denote the following subset of \(\mathcal{A} \times \mathcal{C} \):
\[
\mathcal{E} = \{(p, q) \in \mathcal{A} \times \mathcal{C} : \|q\| \leq \text{dist}(p, \text{bdy}\mathcal{A})\}.
\]
Finally we let
\[
\mathcal{G} = \mathcal{E} \cup (\mathcal{P} \times \{0\}).
\]

Theorem 2.1. Assume that the differential equation (2.1) satisfies conditions (I)-(V) in addition to the standing assumptions on \(\mathcal{A}, \mathcal{F}, \) and \(\mathcal{G} \). Then there exists a Lipschitz function \(\Phi : \mathcal{P} \to \mathcal{Q} \) with Lipschitz constant at most one, satisfying
\[
\Phi(p) \in \mathcal{C} \quad \text{for} \quad p \in \mathcal{P},
\]
\[
\text{supp}\Phi \subseteq \mathcal{A}
\]
and such that the graph, $\mathcal{M} = \text{graph}(\Phi)$, is an invariant manifold for (2.1) with $\mathcal{M} \subset \mathcal{G}$, where \mathcal{G} is given by (2.3). Furthermore \mathcal{M} is locally attracting in the following sense; there exists an $\alpha > 0$ such that if $u(t) = (p(t), q(t))$ is a solution of (2.1) satisfying $u(t) \in \mathcal{E}$ for all $t > 0$, then

$$\text{dist}(u(t), \mathcal{M}) \leq 2e^{-\alpha t}(\text{diam} \mathcal{C}), \ t > 0.$$

That is, $u(t)$ approaches \mathcal{M} at a uniform exponential rate. Moreover Φ is a C^1 -function and the derivative $\Phi(p) = D\Phi(p)$ satisfies $||\Psi||_{\infty} \leq 1$.

3. The Existence of Inertial Manifolds

We turn our attention now to a specific class of scalar partial differential equations of the form

$$\frac{\partial u}{\partial t} = \nu \Delta u + f(u), \quad u \in \mathbb{R}$$

where the domain Ω_n is given in (1.2). The main goal is to show the existence of inertial manifold for (3.1) and each domain Ω_n provided L^2 is rational number.

3.1. Basic Assumptions and Preliminary Result

Here we follow Mallet-Paret and Sell’s approach. The nonlinearity

$$f : \mathbb{R} \rightarrow \mathbb{R}$$

is assumed to satisfy the following conditions for some positive constants K_1 and K_2:

$$\begin{cases}
 f \text{ is } C^1 \text{ in } \mathbb{R}, \\
 |f(u)| \leq K_1|u| + K_2 \text{ in } \mathbb{R}, \text{ and} \\
 |D_u f(u)| \leq K_1 \text{ in } \mathbb{R}.
\end{cases}$$

(3.2)

We consider Neumann boundary conditions for the equation (3.1); i.e.,

$$\text{Neumann : } \frac{\partial u}{\partial n} = 0 \text{ on } \partial \Omega_n.$$
Then equation (3.1) can be written as an abstract differential equation

\[
\frac{du}{dt} = v \Delta u + \tilde{f}(u)
\]

in the phase space \(H = L^2(\Omega_n) \) and \(\tilde{f} \) is a Lipschitz continuous mapping on \(H \) such that

\[
\begin{align*}
\|\tilde{f}(u_1) - \tilde{f}(u_2)\| & \leq K_1 \|u_1 - u_2\|, \quad \text{for all } u_1, u_2 \in H \\
\|\tilde{f}(u)\| & \leq K_1 \|u\| + K_3 \quad \text{for all } u \in H
\end{align*}
\]

where \(K_3 = (\text{vol}\Omega_n)^{\frac{1}{2}} K_2 \). Let

\[
D = \{ u \in H^2 : \text{the boundary conditions (3.3) hold} \}.
\]

For simplicity we shall assume \(\nu = 1 \). For any \(\lambda > 0 \) let \(P_\lambda \) denote the canonical orthogonal projection onto the finite dimensional subspace

\[
\mathcal{P}_\lambda = \text{Span}\{ e_m : \lambda_m \leq \lambda \}
\]

of \(H \) where \(\{ e_j : j = 1, 2, \cdots \} \) be a complete orthonormal set of eigenfunctions \(e_j \) corresponding to eigenvalues \(\lambda_j \) of \(-\Delta \) and let \(Q_\lambda = I - P_\lambda \).

Then the modified equations, to which the Theorem 2.1 will be applied, are

\[
\begin{align*}
p' &= -\phi(||Ap||^2)Ap + \psi(||p||^2)[p + P_\lambda \tilde{f}(p, q)], \\
q' &= -Aq + q + \psi(||p||^2)Q_\lambda \tilde{f}(p, q)
\end{align*}
\]

where \(\lambda > 0 \) is appropriately chosen and \(A \) is the positive self-adjoint operator

\[
A = I - \Delta,
\]

\(\phi, \psi : [0, \infty) \rightarrow [0, 1] \) are \(C^1 \) functions such that with a sufficiently large fixed \(R > 0 \), \(\phi, \psi \) satisfy

\[
\begin{align*}
\phi' &\leq 0 \quad \text{in } [0, \infty), \\
\tau \phi' + \phi &\geq 0 \quad \text{in } [0, \infty), \\
\phi &\equiv 1 \quad \text{in } [0, R^2], \\
\phi &\equiv \frac{1}{2} \quad \text{in } [K_4 R^2, \infty) \quad \text{for some } K_4 > 1, \\
\psi &\equiv 1 \quad \text{in } [0, K_4 R^2], \\
\psi &\equiv 0 \quad \text{in } [K_5 R^2, \infty) \quad \text{for some } K_5 > K_4.
\end{align*}
\]
In order to assert the existence of invariant manifold for (3.1), we have to show that (3.7) satisfies main hypotheses (I)-(V).

For positive constants \(R_1 \) and \(R_2 \) and for \(\lambda > 0 \) we define

\[
\mathcal{A} = \{ p \in \mathcal{P}_\lambda : ||p|| \leq R_1 \}
\]

\[
\mathcal{C} = \{ q \in \mathcal{D} \subset Q_\lambda : ||Aq|| \leq R_2 \}.
\]

The following lemma is proved for any bounded Lipschitz domain and hence it is available for the domains \(\Omega_n \) we study here.

Lemma 3.1. Let \(\Omega_n \subset \mathbb{R}^n \) be a bounded Lipschitz domain with \(n = \dim \Omega \leq 3 \), and let \(f \) satisfy (3.2). Fix \(\phi \) and \(\psi \) satisfying (3.8), and fix the boundary conditions (3.3). Then there exist \(R_1 \) and \(R_2 \) such that the hypotheses (I)-(IV) of the Theorem 2.1, hold for the system (3.7) for all sufficiently large \(\lambda > 0 \). Here one has

\[
A = I - \Delta,
\]

\[
F(p, q) = -\phi(||Ap||^2)Ap + \psi(||p||^2)[p + P_\lambda \tilde{f}(p, q)],
\]

\[
G(p, q) = q + \psi(||p||^2)Q_\lambda \tilde{f}(p, q)
\]

for the abstract system (2.1).

Moreover we obtain a partial variation of the Uniform Cone Condition.

Lemma 3.2. For any \(\lambda \) and any \((p, q) \) and \((\rho, \sigma) \) in \(\mathcal{P}_\lambda \times Q_\lambda \) one has

\[
V' \leq -\langle \sigma, A\sigma \rangle + \phi(||Ap||^2)||A\rho|| ||p|| + W
\]

where

\[
W = ||\sigma||^2 + 2\psi'(||p||^2)(p, \rho)\{(\rho, \sigma), \tilde{f}(p, q)\} - \langle p, \rho \rangle
\]

(3.9)

\[
+ \psi(||p||^2)\{(\rho, \sigma), D \tilde{f}(p, q)(\rho, \sigma)\} - ||\rho||^2.
\]

Furthermore, If \((p, q) \in \mathcal{A} \times \mathcal{C} \) and \(||\rho||, ||\sigma|| \leq 1 \), then the estimate

(3.10)

\[
|W| \leq K_6
\]

holds for some \(K_6 \) depending only on \(R_1 \) and \(R_2 \), but not on \(\lambda \).

This lemma implies the partial proof of the Uniform Cone Condition as done in Mallet-Paret and Sell (1988).
Lemma 3.3. Given R_1 and R_2, then for all sufficiently large λ, the inequality $V' \leq -\xi$ of the Uniform Cone Condition holds for any $(p, q) \in A \times C$ and $(\rho, \sigma) \in P_\lambda \times Q_\lambda$ with $||\rho|| = ||\sigma|| = 1$, provided

\begin{equation}
||Ap|| \geq K_4^2 R
\end{equation}

also holds.

3.2. Verifying The Uniform Cone Condition

Now the only thing we need to show is that

$$V' \leq -\xi$$

for $(p, q) \in A \times C$ with $||Ap|| \leq K_4^2 R$ and for $(\rho, \sigma) \in P_\lambda \times Q_\lambda$. Since $||p|| \leq ||Ap||$, for such points one has $\psi(||p||^2) = 1$, $\psi'(||p||^2) = 0$, and $\phi(||Ap||^2) \leq 1$. Thus with $||\rho|| = ||\sigma|| = 1$, Lemma 3.2 yields

\begin{equation}
\begin{cases}
V' \leq -\langle \sigma, A\sigma \rangle + ||A\rho|| + W \\
W = \langle (-\rho, \sigma), D\tilde{f}(p, q)(\rho, \sigma) \rangle.
\end{cases}
\end{equation}

To show this, we need good information about the eigenvalues and eigenfunctions of $-\Delta$ for Neumann boundary conditions. By using M. Pinsky’s idea (1981) and separation of variables, one obtains the following lemma. Let $Z_+ = Z_+ \cup \{0\}$.

Lemma 3.4. Let $\Omega_n \subset \mathbb{R}^n$ be given in (1.2) for $n = 2, 3$. Then the eigenvalues and the eigenfunctions of $-\Delta$ for Neumann boundary conditions are of the form: for $\Omega_2 \subset \mathbb{R}^2$,

\begin{equation}
\begin{cases}
\lambda_k = \frac{16}{27}(k_1^2 + k_2^2 - k_1 k_2), \\
f_k(x_1, x_2) = \sum_{(k_1, k_2)} \exp\left(\frac{2i}{3}(k_2 x_1 + \frac{2k_1 - k_2}{\sqrt{3}} x_2)\right),
\end{cases}
\end{equation}

and for $\Omega_3 \subset \mathbb{R}^3$,

\begin{equation}
\begin{cases}
\lambda_k = \frac{16}{27}(k_1^2 + k_2^2 - k_1 k_2) + \frac{k_3^2}{L^2}, \\
f_k(x_1, x_2, x_3) = \sin\frac{k_3}{L} x_3 \sum_{(k_1, k_2)} \exp\left(\frac{2i}{3}(k_2 x_1 + \frac{2k_1 - k_2}{\sqrt{3}} x_2)\right),
\end{cases}
\end{equation}
where \(k = (k_1, k_2) \in \mathbb{Z}^2 \) (\(k = (k_1, k_2, k_3) \in \mathbb{Z}^2 \times \mathbb{Z}_\oplus \) for \(n = 3 \)) satisfies
(i) \(k_1 + k_2 \) is multiple of 3, and (ii) \((k_1, k_2) \) in the summation ranges over \(S \subset \mathbb{Z}^2, |S| = 6 \), which are given as follows:

\[(k_1, k_2)\]
\[\uparrow \quad \downarrow\]
\[(k_2 - k_1, k_2) \quad (k_1, k_1 - k_2)\]
\[\uparrow\]
\[(k_2 - k_1, -k_1) \quad (-k_2, k_1 - k_2)\]
\[\downarrow \quad \uparrow\]
\[(-k_2, -k_1)\]

The proof that \(V' \leq -\xi \), for domains of interest, involves considering two possibilities: either (i) \(-\langle \sigma, A\sigma \rangle + ||A\rho|| \) is sufficiently negative to overcome the bound \(|W| \leq K_6 \), where \(K_6 \) is given by (3.10): or (ii) \(-\langle \sigma, A\sigma \rangle + ||A\rho|| \) is negative and bounded away from zero, while \(W \) is close to zero.

The case (i) is related to the occurrence of large gaps in the spectrum of \(A = I - \Delta \). Such is the case for the 2-dimensional domains considered here. Therefore, one can prove Uniform Cone Condition completely in these cases.

Theorem 3.1. Assume that \(\Omega_2 \) is 2-dimensional domain given in (1.2). Fix Neumann boundary conditions. Assume \(f \) satisfies the regularity and growth conditions (3.2); assume also the function \(f \) is \(C^3 \) in \(R \). Fix functions \(\phi \) and \(\psi \) satisfying (3.8). Then there exists arbitrarily large \(\lambda \) such that the system (3.7) satisfies all the hypotheses of the Invariant Manifold Theorem 2.1.

Proof. Since the eigenvalues of \(-\Delta\) for Neumann boundary conditions are of the form

\[\lambda_k = \frac{16}{27}(k_1^2 + k_2^2 - k_1 k_2)\]

where \(k = (k_1, k_2) \in \mathbb{Z}^2 \), there exists arbitrarily large \(m \) such that

\[\lambda_k = \frac{16}{27}(k_1^2 + k_2^2 - k_1 k_2) \notin [m, m + h]\]
for any \(k = (k_1, k_2) \in \mathbb{Z}^2 \) which implies the existence of arbitrarily large spectral gaps (Mallet-Paret and Sell (1988)). Therefore, one can choose arbitrarily large \(\lambda > 0 \) which insure that \(-\langle \sigma, A\sigma \rangle + ||A\rho||\) is sufficiently negative to overcome the bound \(|W| \leq K_6\), where \(K_6 \) is given by (3.10).

If there are no large gaps in the spectrum of \(A = I - \Delta \) to overcome \(|W|\), we must use show that \(-\langle \sigma, A\sigma \rangle + ||A\rho||\) is negative and bounded away from zero, while \(W \) is close to zero from which we obtain

(3.15) \[V' \leq -\xi. \]

In order to do this we define a multiplication operator on \(L^2 \) as follows: for any \(v \in L^\infty \) we let \(B_v \) denote the operator on \(L^2 \) defined by

\[(B_vu)(x) = v(x)u(x), \quad u \in L^2 \]

and let \(\bar{v} \) denote the mean value

\[\bar{v} = (\text{vol} \Omega)^{-1} \int_{\Omega} v(x)dx. \]

Then we obtain the following results.

Lemma 3.5. Let \(\Omega_1 \) be the domain given in (1.2) and let \(\{e_m\}_{m=1}^{\infty} \) denote a complete orthonormal set of eigenfunctions of \(-\Delta\) with Neumann boundary conditions. For any \(v \in H^2(\Omega_3) \), let \(v_m = \langle v, e_m \rangle \) be the \(m \)th Fourier coefficient. Then there exists a monotone function \(\Theta(\lambda) > 0 \) satisfying \(\Theta(\lambda) \rightarrow 0 \) as \(\lambda \rightarrow \infty \), such that for any \(\lambda > 0 \) and \(v \in \mathcal{D} \subset H^2 \), one has

(3.16) \[\sum_{\lambda_m \geq \lambda} |v_m| \leq \Theta(\lambda)||v||_{H^2}. \]

Proof. For each \(m \), one has

(3.17) \[
(1 + \lambda_m)v_m = \langle v, Ae_m \rangle = \langle v, e_m \rangle - \langle v, \Delta e_m \rangle
= \langle v, e_m \rangle - \int_{\Omega} (\Delta v)\bar{e}_m dx + \int_{\partial\Omega} \frac{\partial v}{\partial n}\bar{e}_m d\tilde{x}
= \langle A_v v, e_m \rangle.
\]
where A_ϵ denotes the operator $I - \Delta$ extended to the domain H^2. Then

$$\sum_{\lambda_m \geq \lambda} |v_m| \leq \left(\sum_{\lambda_m \geq \lambda} (1 + \lambda_m)^{-1} \right)^{\frac{1}{2}} \left(\sum_{\lambda_m \geq \lambda} |(A_\epsilon v, g_m)|^2 \right)^{\frac{1}{2}}$$

$$\leq \left(\sum_{\lambda_m \geq \lambda} (1 + \lambda_m)^{-1} \right)^{\frac{1}{2}} ||A_\epsilon v||_{L^2}$$

$$\leq \Theta(\lambda) ||v||_{H^2}$$

where $\Theta(\lambda) = K_7 \leq \left(\sum_{\lambda_m \geq \lambda} (1 + \lambda_m)^{-1} \right)^{\frac{1}{2}}$ and K_7 does not depend on λ.

LEMMA 3.6. Assume that L^2 is rational number. Let $k = (k_1, k_2, k_3) \in \mathbb{Z}^3$ and consider

$$||k||_1^2 = \frac{16}{27} (k_1^2 + k_2^2 - k_1 k_2) + \frac{k_3^2}{L^2}. \ (3.18)$$

Then there exists $\xi > 0$ such that for any $\kappa > 1$ and $d > 0$, there exists an arbitrarily large λ satisfying two statements:

(i) whenever $||k||_1^2, ||l||_1^2 \in (\lambda - \kappa, \lambda + \kappa)$ with $k, l \in \mathbb{Z}^3$, one has either $k = l$ or $||k - l||_1 \geq d$,

(ii) $||k||_1^2 \notin (\lambda - \frac{\xi}{2}, \lambda + \frac{\xi}{2})$ for each $k \in \mathbb{Z}^3$.

Since the proof of lemma is similar as one in Mallet-Paret and Sell (1988), we omit the proof. From above lemmas, one proves the following result.

LEMMA 3.7. Let Ω_3 be given in (1.2) and fix Neumann boundary conditions for the Laplacian. Then there exists a quantity $\xi > 0$ such that for every $\epsilon > 0$, $\kappa > 0$, there exist arbitrarily large $\lambda > \kappa$, such that

$$||(P_{\lambda+\kappa} - P_{\lambda-\kappa})(B_v - \tilde{v}I)(P_{\lambda+\kappa} - P_{\lambda-\kappa})||_{op} \leq \epsilon ||v||_{H^2} \ (3.19)$$

holds for any $v \in \mathcal{D} \subset H^2$; and such that

$$\lambda_{m+1} - \lambda_m \geq \xi \ (3.20)$$

where m satisfies $\lambda_m \leq \lambda < \lambda_{m+1}$.
Proof. For this proof, we follow Mallet-Paret and Sell’s approach. Let \(\epsilon > 0 \) and \(\kappa > 0 \) be given and fix \(d > 0 \) sufficiently large so that

\[
\theta(d^2) < \frac{\epsilon}{6}
\]

where the function \(\theta \) is as in Lemma 3.5. With \(\kappa \) and \(d \) now given, let \(\xi \) and \(\lambda \) be as in Lemma 3.6; note that \(\lambda \) can be selected to be arbitrarily large with the other quantities kept fixed. Then (3.20) is immediately satisfied. Let \(\{e_k : k \in \mathbb{Z}^2 \times \mathbb{Z}_0\} \) be a complete orthonormal set of eigenfunctions of \(-\Delta \) for Neumann boundary condition on the domain \(\Omega_3 \). Fix \(v \in \mathcal{D} \subset H^2 \) and expand this function as a Fourier series in the eigenvalues of \(-\Delta \):

\[
v(x) = \sum_{k \in \mathbb{Z}^2 \times \mathbb{Z}_0} v(k)e_k.
\]

Note the mean value

\[
\bar{v} = v(0)
\]

of the function \(v \), as well as the summability

(3.21) \[
\sum |v(k)| < \infty
\]

of the coefficients. Now consider a function

\[
\rho \in \text{Range} \ (P_{\lambda+\kappa} - P_{\lambda-\kappa}) \subset L^2 : \quad ||\rho|| = 1.
\]

Its Fourier expansion

\[
\rho(x) = \sum \rho(k)e_k
\]

involves only terms for which

\[
\lambda - \kappa < ||k||_1^2 \leq \lambda + \kappa.
\]

Since the operator \(B_v \) is selfadjoint, it is sufficient to show

\[
|\langle \rho, (B_v - \bar{v}I)\rho \rangle| \leq \epsilon ||v||_{H^2}
\]

to show the required inequality (3.19).
The summability condition (3.21) permits one to write term by term

$$
\langle \rho, (B_v - \tilde{v} I) \rho \rangle = \sum_{j \neq 0} \sum_{k} \sum_{l} \tilde{v}_{(j)} \tilde{\rho}_{(k)} \rho_{(l)} \int_{\Omega_3} \tilde{e}_j \tilde{e}_k e_j dx
$$

(3.22)

and

$$
\delta_s = \begin{cases}
(l_1, l_2, l_3), & \text{if } s = 1, 2, 3, 4, 5, 6, \\
(-l_2, l_1 - l_2, l_3), & \text{if } s = 1, 2, 3, 4, 5, 6, \\
(l_1 + l_2, -l_1, l_3), & \text{if } s = 1, 2, 3, 4, 5, 6, \\
(l_2 - l_1, l_2, l_3), & \text{if } s = 1, 2, 3, 4, 5, 6.
\end{cases}
$$

(3.23)

where \(\delta_s \) are

$$\delta_1 = (l_1, l_2, l_3), \quad \delta_2 = (l_1, l_1 - l_2, l_3), \quad \delta_3 = (-l_2, l_1 - l_2, l_3), \quad \delta_4 = (-l_2, -l_1, l_3), \quad \delta_5 = (-l_1 + l_2, -l_1, l_3), \quad \delta_6 = (l_2 - l_1, l_2, l_3)$$

and \(k, l \) are restricted to the ranges

$$[[k]]^2, \quad [[l]]^2 \in (\lambda - \kappa, \lambda + \kappa].$$

For each \(s \), \(1 \leq s \leq 6 \), let \(h_s \) be a function on \(Z^3 \) given by \(h_s(l) = \delta_s \) where \(\delta_s \) is given in (3.23). Then, by (3.22) and a Young inequality, one has

$$
\sum_{s=1}^{6} \sum_{j \neq 0} \sum_{k} \sum_{l} \tilde{v}_{(j)} \tilde{\rho}_{(k)} \rho_{(l)} \int_{\Omega_3} \tilde{e}_j \tilde{e}_k e_j dx
$$

$$= (\text{vol } \Omega_3) \sum_{s=1}^{6} \sum_{k \neq h_s(l)} \tilde{v}_{(k-h_s(l))} \tilde{\rho}_{(k)} \rho_{(l)},$$

\leq (\text{vol } \Omega_3) \sum_{s=1}^{6} \sum_{k \neq h_s(l)} |v_{(k-h_s(l))}| \sum |\rho_{(k)}|^2,

\leq 6 \sum_{k \neq h_s(l)} |v_{(k-h_s(l))}|,

\leq 6 \theta (d^2) ||v||_{H^2},

\leq \epsilon ||v||_{H^2}
$$

as required.
REMARK. The definition of PSA used in Mallet-Paret and Sell requires that the inequality (3.19) holds for any \(v \in H^2 \). However due to the reduction of a class of nonlinear functions \(f \), one obtains the last part of the next lemma and hence the result of Lemma 3.7 can replace the role of PSA.

Lemma 3.8. Assume that \(f \) is a \(C^3 \) function with respect to \(u \in R \). Then for any \(u \in R \), \(v(x) = D_u f(u(x)) \) belongs to \(H^2 \). Moreover, given \(C_1 \) there exists \(C_2 \) such that
\[
\|u\|_{H^2} \leq C_1 \quad \Rightarrow \quad \|v\|_{H^2} \leq C_2.
\]
In particular, if \(u \in \mathcal{D} \subset H^2 \), then \(v \in \mathcal{D} \subset H^2 \).

Theorem 3.2. Assume that the domain \(\Omega_3 \) given in (1.2). Assume the same conditions as in Theorem 3.1 except the dimension of domains. Then there exist arbitrary large \(\lambda \) such that the system (3.7) satisfies all the hypotheses of the Invariant Manifold Theorem 2.1.

For this result, we mention Mallet-Paret and Sell (1988). From all these results, one obtains the following result.

Theorem 3.3. Assume that (3.1) is dissipative and that \(f : R \rightarrow R \) is of class \(C^3 \). Let the domain \(\Omega_n \subset R^n \) be given in (1.2). Then for every \(\nu > 0 \) and for Neumann boundary conditions, there exists an inertial manifold \(\mathcal{M} \) for (3.1).

References

Department of Mathematics Education
College of Education
Korea University
Sungbuk-Ku Anam-Dong
Seoul 136-701, Korea
E-mail: kwean@kuccnx.korea.ac.kr