EXOTIC SYMPLECTIC STRUCTURES ON $S^3 \times \mathbb{R}$

YONG SEOUNG CHO AND JIN YUE YOON

ABSTRACT. We construct exotic symplectic structures on $S^3 \times \mathbb{R}$ which is obtained by the symplectic sum of two smooth symplectic four-manifolds with exotic symplectic structures, each of which is diffeomorphic to \mathbb{R}^4.

1. Introduction

Let ω_0 be the standard symplectic structure on \mathbb{R}^{2n} and $L \subset \mathbb{R}^{2n}$ be a closed Lagrangian submanifold. In [3], Gromov have shown the following theorem:

Theorem (Gromov). As a cohomology class $[\omega_0]$ is non-zero in $H^2(\mathbb{R}^{2n}, L; \mathbb{R})$. The form ω_0 has a potential ψ on \mathbb{R}^{2n}, i.e., $\omega_0 = d\psi$. Furthermore, $[\psi|_L] \neq 0$ in $H^1(L; \mathbb{R})$.

The Lagrangian submanifold L in a $2n$-dimensional symplectic manifold M is called exact(non-exact) if the restriction to the Lagrangian L of the potential is exact(non-exact). Thus, in the above Theorem, L is a non-exact Lagrangian in \mathbb{R}^{2n}.

Gromov have also proved that there are no exact Lagrangian sub-varieties in \mathbb{R}^{2n}, for the standard symplectic structure. Recently, Bates and Peschke [1] have explicitly endowed a manifold M diffeomorphic to \mathbb{R}^4 with a symplectic form ω admitting a Lagrangian torus T such that $[\omega] = 0$ in $H^2(M, T; \mathbb{R})$. Hence T is an exact Lagrangian. By Gromov’s theorem, (M, ω) does not symplectically embed in (\mathbb{R}^4, ω_0), such a structure ω is called an exotic symplectic structure on M.

Received February 3, 1997.
1991 Mathematics Subject Classification: Primary 57N13, 58F05.
Key words and phrases: symplectic four-manifolds, exotic symplectic structure, Lagrangian submanifold.
This work was supported in part by the KOSEF through the GARC at Seoul National University and BSRI-97-1424.
Let M_i ($i = 1, 2$) be smooth symplectic four-manifolds diffeomorphic to \mathbb{R}^4 with symplectic forms admitting Lagrangian tori (T'_i) ($i = 1, 2$).

In section 2, we introduce the symplectic sum of these two manifolds and construct symplectic forms ω_M on the sum $M = M_1 \# \psi M_2$ from symplectic forms on the M_i ($i = 1, 2$). We first show that

Lemma 2.3. $M = M_1 \# \psi M_2 \cong (M_1 - S_1 - K) \cup \varphi ((M_2 - S_2 - j_2(D^2))) \cong S^3 \times \mathbb{R}$, where S_i are the interior surfaces of S_i on (T_1) with the boundaries $S_i^1 = j_i(\partial D^2)$ ($i = 1, 2$). Hence $H^1(T'_2; \mathbb{R}) \cong H^2(M, T'_2; \mathbb{R})$ is an isomorphism, where T'_2 is a Lagrangian surface of genus 2 in M.

In section 3, we show the process of constructing symplectic forms ω'_M on $M = M_1 \# \psi M_2 \cong S^3 \times \mathbb{R}$ from exotic symplectic forms on two smooth symplectic four-manifolds M_i ($i = 1, 2$) diffeomorphic to \mathbb{R}^4.

In section 4, we get the following two Lemmas 4.1 and 4.2 from each case of manifolds (M, ω_M) and (M, ω'_M):

Lemma 4.1. The symplectic forms ω_M admit a non-exact Lagrangian surface T'_2 of genus 2 in M and hence $[\omega_M] \neq 0$ in $H^2(M, T'_2; \mathbb{R})$.

Lemma 4.2. The symplectic forms ω'_M admit an exact Lagrangian surface T_2 of genus 2 in M and hence $[\omega'_M] = 0$ in $H^2(M, T_2; \mathbb{R})$.

By the Lemmas 4.1 and 4.2, we can get the following Theorem 4.3.

Theorem 4.3. The symplectic forms ω_M on the symplectic sum M of two smooth symplectic four-manifolds M_i ($i = 1, 2$) diffeomorphic to \mathbb{R}^4 with symplectic forms admitting non-exact Lagrangian tori (T'_i) ($i = 1, 2$) admit a non-exact Lagrangian surface T'_2 of genus 2 and $[\omega_M] \neq 0$ in $H^2(M, T'_2; \mathbb{R})$.

On the other hand, the symplectic forms ω'_M on the symplectic sum M of two smooth symplectic four-manifolds M_i ($i = 1, 2$) diffeomorphic to \mathbb{R}^4 with symplectic forms admitting exact Lagrangian tori T'_i ($i = 1, 2$) admit an exact Lagrangian surface T_2 of genus 2 and $[\omega'_M] = 0$ in $H^2(M, T_2; \mathbb{R})$. Therefore, (M, ω'_M) does not symplectically diffeomorphic to (M, ω_M).

2. Symplectic sums

Let M_i ($i = 1, 2$) be smooth symplectic four-manifolds which are diffeomorphic to \mathbb{R}^4. Let \mathbb{R}^4 be thought of as $\mathbb{R}^2 \times \mathbb{R}^2$ and let $(r, \theta), (s, \phi)$ be...
polar coordinates on each factor. That is, if \((x_1, x_2)\) and \((y_1, y_2)\) are rectangular coordinates on each factor of \(\mathbb{R}^2 \times \mathbb{R}^2\), then \(x_1 = r \cos \theta, x_2 = r \sin \theta, y_1 = s \cos \phi, y_2 = s \sin \phi\). Suppose that \(\mathbb{R}^4\) has a standard symplectic structure \(\omega_{\mathbb{R}^4} = \sum_{i=1}^2 dx_i \wedge dy_i\).

Let \(T_1 = \{(x_1, x_2, y_1, y_2) \in \mathbb{R}^4 | x_1^2 + x_2^2 = \frac{r^2}{2}, y_1^2 + y_2^2 = \frac{s^2}{2} \} = \{(\sqrt{\frac{2}{r}} \cos \theta, \sqrt{\frac{2}{s}} \cos \phi, \sqrt{\frac{2}{r}} \sin \theta, \sqrt{\frac{2}{s}} \sin \phi) \in \mathbb{R}^4 | 0 \leq \theta < 2\pi, 0 \leq \phi < 2\pi \}. \) Let \(j : T_1 \to \mathbb{R}^4\) be an embedding defined by \(j(r \cos \theta, r \sin \theta, s \cos \phi, s \sin \phi) = (r \cos \theta, s \cos \phi, r \sin \theta, s \sin \phi)\). Then \(T'_1 = j(T_1)\) is a torus defined by \(x_1^2 + y_1^2 = \frac{r^2}{2}\) and \(x_2^2 + y_2^2 = \frac{s^2}{2}\), and a closed Lagrangian in \(\mathbb{R}^4\) with respect to \(\omega_{\mathbb{R}^4}\) since \(j^* \omega_{\mathbb{R}^4} |_{T'_1} = j^* \omega_{\mathbb{R}^4}\) and

\[
\begin{align*}
 j^* \omega_{\mathbb{R}^4}(m) &\left(\frac{\partial}{\partial \theta}, \frac{\partial}{\partial \phi}\right) \\
 &= \omega_{\mathbb{R}^4}(j(m))(dj\left(\frac{\partial}{\partial \theta}|_m\right), dj\left(\frac{\partial}{\partial \phi}|_m\right)) \\
 &= (dx_1 \wedge dy_1 + dx_2 \wedge dy_2)(j(m)) \\
 &= \left(-r \sin \alpha \left|_{j(m)}\right. \frac{\partial}{\partial x_1} - r \cos \alpha \left|_{j(m)}\right. \frac{\partial}{\partial y_1}, \right. \\
 &\left.- s \sin \beta \left|_{j(m)}\right. \frac{\partial}{\partial x_2} + s \cos \beta \left|_{j(m)}\right. \frac{\partial}{\partial y_2}\right) \\
 &= -r \sin \alpha \cdot 0 - 0 \cdot r \cos \alpha + 0 \cdot s \cos \beta + s \sin \beta \cdot 0 \\
 &= 0
\end{align*}
\]

for all \(m = (r \cos \theta, r \sin \theta, s \cos \phi, s \sin \phi) \in T_1\).

By Gromov’s theorem in section 1, \([\omega_{\mathbb{R}^4}] \neq 0\) in \(H^2(\mathbb{R}^4, T'_1; \mathbb{R})\) and \([\sum_{i=1}^2 x_i dy_i|_{T'_1}] \neq 0\) in \(H^1(T'_1; \mathbb{R})\). If we take \(\phi_i\) as diffeomorphism from \(M_i\) to \(\mathbb{R}^4\) such that \(\phi_i^{-1}(T'_1) = (T'_1)^i\) and if we set \(\omega_{M_i} = \phi_i^* \omega_{\mathbb{R}^4}\) as symplectic structures on \(M_i\) \((i = 1, 2)\), then \((T'_1)^i\) are closed Lagrangian tori in \(M_i\), since \(\omega_{M_i}|_{(T'_1)^i} = \phi_i^* \omega_{\mathbb{R}^4}|_{(T'_1)^i} = \omega_{\mathbb{R}^4}|_{T'_1} = 0\). Moreover, \((T'_1)^i\) are non-exact Lagrangian tori in \(M_i\) since \([\phi_i^{-1}(\sum_{i=1}^2 x_i dy_i)|_{(T'_1)^i}] = [\sum_{i=1}^2 x_i dy_i|_{T'_1}] \neq 0\) in \(H^1((T'_1)^i; \mathbb{R})\). By isomorphisms \(H^1((T'_1)^i; \mathbb{R}) \cong H^2(M_i, (T'_1)^i; \mathbb{R})\), \([\omega_{M_i}] \neq 0\) in \(H^2(M_i, (T'_1)^i; \mathbb{R})\).

Let \(D^2\) be the standard closed 2-dimensional disk of radius \(\sqrt{r}\) with symplectic structure \(\omega_{D^2} = dx_1 \wedge dy_1\). Let \(h : (D^2, \partial D^2) \to (\mathbb{R}^4, T'_1)\) be
defined by \(h(x_1, y_1) = \left(\frac{x_1}{\sqrt{2}}, \frac{y_1}{\sqrt{2}}, \frac{y_2}{\sqrt{2}}, -\frac{x_2}{\sqrt{2}} \right) \), and let \(j_i = \varphi_i^{-1} \circ h : (D^2, \partial D^2) \rightarrow (M_i, (T_i^1))^i \). Then \(j_i \) are symplectic embeddings satisfying \(j_i(\partial D^2) \subset (T_i^1)^i \) and \((j_i(D^2) - j_i(\partial D^2)) \cap (T_i^1)^i = \emptyset \) (\(i = 1, 2 \)) since \(j_i^*\omega_{M_i} = j_i^*\varphi_i^*\omega_{\mathbb{R}^4} = (\varphi_i \circ j_i)^*\omega_{\mathbb{R}^4} = h^*\omega_{\mathbb{R}^4} \) and

\[
\begin{align*}
 h^*\omega_{\mathbb{R}^4} &= h^*(dx_1 \wedge dy_1 + dx_2 \wedge dy_2) \\
 &= \frac{1}{\sqrt{2}} dx_1 \wedge \frac{1}{\sqrt{2}} dy_1 + \frac{1}{\sqrt{2}} dy_1 \wedge (-\frac{1}{\sqrt{2}}) dx_1 \\
 &= \frac{1}{2} dx_1 \wedge dy_1 - \frac{1}{2} dy_1 \wedge dx_1 \\
 &= dx_1 \wedge dy_1 \\
 &= \omega_{D^2}.
\end{align*}
\]

We can choose a fiber-orientation reversing bundle isomorphism \(\psi : v_1 \rightarrow v_2 \). We choose fiber metrics on \(v_i \) such that \(\psi \) is isometric. Let \(v_i^0 \) be disk bundles in \(v_i \) (\(i = 1, 2 \)). Then there is an orientation-preserving diffeomorphism \(\varphi = \iota \circ \psi : v_1^0 - j_1(D^2) \rightarrow v_2^0 - j_2(D^2) \), where the map \(\iota : v_2^0 - \{0 - section\} \rightarrow v_2^0 - \{0 - section\} \) is defined by \(\iota(x) = (\frac{1}{\pi |x|} - 1)^{1/2} x \).

Now we construct suitable models for tubular neighborhoods of the sub-manifolds \(j_i(D^2) \) in \(M_i \) (\(i = 1, 2 \)). Let \(v_i \) denote the \(SO(2) \)-vector bundles over \(D^2 \) and let \(v_i^0 \) denote the sub-disk bundles of radius \(\pi^{-1/2} \) (\(i = 1, 2 \)). Let \(\pi : S \rightarrow D^2 \) be the 2-sphere bundle obtained by gluing together \(v_1^0 \) and \(v_2^0 \) using \(\iota \) defined in the above statement. We may take the sphere bundle \(S \) over \(D^2 \) as \(D^2 \times S^2 \). Let \(i_0, i_{\infty} : D^2 \rightarrow S \) be 0-sections of \(v_0^0 \) and \(v_2^0 \) with images \(D_0 \) and \(D_{\infty} \), respectively. Thus, \(v^0_1 = S - D_{\infty} \).

Considering cylindrical polar coordinates \((\theta, x_3)\) on \(S^2 - \{(0, 0, \pm 1)\} \) where \(0 \leq \theta < 2\pi \) and \(-1 \leq x_3 \leq 1 \), we can take a symplectic form \(\omega_{S^2} \) on \(S^2 \) as the area form \(\omega_{S^2} = d\theta \wedge dx_3 \) induced by the Euclidean metric. Hence we may choose a closed 2-form \(\eta \) on the sphere bundle \(S \cong D^2 \times S^2 \) over \(D^2 \) as \(\omega_{S^2} \). Then \(\eta \) has the following properties: \(\iota^*_0 \eta = \eta|_{i_0(D^2)} = \eta|_{D_0} = 0 \) and \(\eta|_{S^2} = d\theta \wedge dx_3 \) is the symplectic form. By the method of Thurston[8], we can thus construct the set of symplectic forms on \(S \) as \(\{\omega_t = \pi^*\omega_{D^2} + t \cdot \eta \mid 0 < t \leq t_1 \} \) for some sufficiently small constant \(t_1 > 0 \).

On the other hand, there is a smooth orientation-preserving embedding \(f : v^0_1 \rightarrow M_1 \) (into any preassigned neighborhood of \(j_1(D^2) \)) with \(f \circ i_0 = j_1 \).
And $f|_{D_0} : (D_0, \omega_t) \to (M_1, \omega_{M_1})$ is symplectic, since $i_0^* \omega_t = i_0^* \pi^* \omega_{D^2} + t \cdot i_0^* \eta = (\pi \circ i_0)^* \omega_{D^2} = \omega_{D^2}$, $\tilde{f} \circ i_0 = j_1$ and j_1 is symplectic. Thus we get the following Theorem 2.1 which is the same result as Gompf’s.

Theorem 2.1. Let (v_1^0, ω_t), (M_1, ω_{M_1}), D_0 and $f : v_1^0 \to M_1$ be the same as above. Then there is a compactly supported isotopy rel D_0 from f to an embedding $\tilde{f} : v_1^0 \to M_1$ that is symplectic in a neighborhood of D_0.

Proof. It can be proved by the same way as the proof of Lemma 2.1 in [2].

Weinstein’s integral operator $I : \Omega^2(v_1^0) \to \Omega^1(v_1^0)$ is defined by $I(\eta) = \int_0^1 \pi_s^*(X_s \cdot \eta) ds$, where $\pi_s : v_1^0 \to v_1^0 (0 \leq s \leq 1)$ is a multiplication by s in this bundle structure, $X_s = \frac{d}{ds} \pi_s$ the corresponding vector field, and \cdot denotes contraction. The key property of I is that if η satisfies $d\eta = 0$ and $i_0^* \eta = 0$, then $dI(\eta) = 0$. Set $\phi = I(\eta)$, and define Y_t by $Y_t \cdot \omega_t = -\phi, 0 < t \leq t_1$. Then $Y_t(0 < t \leq t_1)$ is a time-dependent vector field on v_1^0 that vanishes on D_0 and $SO(2)$-invariant. For any $SO(2)$-invariant compact subset $K \subset v_1^0$ and fixed $t_0 \in (0, t_1]$, Y_t integrates to an $SO(2)$-equivariant flow $F : K \times J \to v_1^0$, where J is some neighborhood of t_0 in $(0, t_1]$ and $F_{t_0} = id_K$. Since $\frac{d}{dt}(F_t^* \omega_t) = dF_t^* (Y_t \cdot \omega_t) + F_t^* (\frac{d}{dt} \omega_t) = -F_t^* d\phi + F_t^* \eta = -F_t^* \eta + F_t^* \eta = 0$, $F_t^* \omega_t$ is independent of t.

For $x \in v_1^0$, let $D(x)$ be the closed disk in the fiber $\pi^{-1}(\pi(x))$ that is bounded by the $SO(2)$-orbit of x. Let $A(x) = \int_{D(x)} \eta$ be the η-area of $D(x)$. Then $A : v_1^0 \to [0, 1)$ is a smooth, $SO(2)$-invariant, proper surjection that increases radially. The ω_t-area of $D(x)$ is given by $\int_{D(x)} \omega_t = \int_{D(x)} (\pi^* \omega_{D^2} + t \cdot \eta) = t \int_{D(x)} \eta = t \cdot A(x)$. Fix $x \in v_1^0$ and $t_0 \in (0, t_1]$, and integrate Y_t as above to obtain a flow of $D(x)$ with $F_{t_0} = id_{D(x)}$. Let $x(t) = F_t(x)$ be the trajectory of x, with $x(t_0) = x$. Since F is $SO(2)$-equivariant, $\partial F_t D(x) = \partial D(F_t(x)) = \partial D(x(t))$. Thus the ω_t-area of $D(x(t))$ is $t \cdot A(x(t)) = \int_{D(x(t))} \omega_t = \int_{F_t D(x)} \omega_t = \int_{D(x)} F_t^* \omega_t = \int_{D(x)} F_{t_0}^* \omega_{t_0} = t_0 \cdot A(x)$, and hence $A(x(t)) = \frac{t}{t_1} A(x)$, which tells us that all flow lines of Y_t are decreasing in A. Since $A : v_1^0 \to [0, 1)$ is proper, flow lines cannot escape from v_1^0 as t increases, and the flow is globally defined as a map $F : v_1^0 \times [t_0, t_1] \to v_1^0$.

For any $x \in v_1^0$, $A(x) < 1$, so $A(F_n(x)) = A(x(t_1)) < \frac{t}{t_1}$. Thus, we may arrange for $F_{t_1}(v_1^0)$ to lie in any preassigned neighborhood V of D_0 by choosing t_0 sufficiently small. Since $F_{t_1} : (v_1^0, \omega_{t_0}) \to (v_1^0, \omega_{t_1})$ is symplectic,
we get the following result with the neighborhood $V = v_1^0$ of D_0: For the neighborhood v_1^0 of D_0 in (v_1^0, ω_t), there is a t_0 with $0 < t_0 \leq t_1$ such that, for all positive $t \leq t_0$, (v_1^0, ω_t) embeds symplectically in v_1^0 rel D_0. From the above fact and Theorem 2.1, we can get a symplectic embedding $\hat{f} : (v_1^0, \omega_t) \to (M_1, \omega_{M_1})$ with $\hat{f} \circ i_0 = j_1$, for any fixed $t \in (0, t_0]$ with t_0 suitably small, and \hat{f} is isotopic rel D_0 to f.

We would like to find a similar map from a neighborhood of D_∞ in (S, ω_t) into a neighborhood of $j_2(D^2)$ in M_2. By construction, $v_2^0 = S - D_0$ canonically identifies the normal bundles v_3 and v_0 of D_∞ and D_0 (reversing fiber-orientation). We also have isomorphisms $f_* : v_0 \to v_1$ and $\psi : v_1 \to v_2$ (the latter reversing orientation). Let $\psi'' : v_\infty \to v_2$ denote the composite of these (which preserves orientation). Then there is a smooth embedding $g : S - D_0 \to M_2$ (independent of t) with $g \circ i_\infty = j_2$ and $g_* = \psi''$ on v_∞. Clearly, $M = M_1 \psi M_2$ could be constructed as a smooth manifold by composing f^{-1} and g. However, we cannot perturb g to be symplectic, since we have $i_\infty^* \omega_t = \omega_{D^2} + t \cdot i_\infty^* \eta$. To remedy this, we choose a smooth map $\mu : S \to S$ that radially rescales v_1^0, fixing a neighborhood of D_∞ and collapsing a neighborhood of D_0 onto D_0. By composing $g^{-1} \circ \mu$, we may assume that g^{-1} extends to a smooth map $\lambda : N \to S$ with $\lambda(N - g(S - D_0)) \subset D_0$, where N is a neighborhood of $g(S - D_0)$. Let $\zeta = \lambda^* \eta$. Then ζ is a closed 2-form that vanishes on $N - g(S - D_0)$, since $i_0^* \eta = 0$. And ζ can be extended over M_2 as follows:

$$
\zeta = \begin{cases}
\lambda^* \eta & \text{over } g(S - D_0) \\
0 & \text{over } M_2 - g(S - D_0).
\end{cases}
$$

ζ is determined by g and η (so it is independent of λ and t) and $j_2^* \zeta = i_\infty^* \eta$. Let’s replace ω_{M_2} by $\tilde{\omega}_{M_2} = \omega_{M_2} + t \cdot \zeta$. Since nondegeneracy is an open condition, $\tilde{\omega}_{M_2}$ will be symplectic on M_2 provided that $0 < t \leq t_0$ for t_0 sufficiently small. Furthermore, $g|_{D_\infty} : (D_\infty, \omega_t) \to (M_2, \tilde{\omega}_{M_2})$ is a symplectic embedding. Hence we can get the same result as Theorem 2.1 for the smooth embedding g, and by this result, there is a compactly supported isotopy rel D_∞ from g to $\tilde{g} : (S - D_0, \omega_t) \to (M_2, \tilde{\omega}_{M_2})$ which is symplectic on a neighborhood U_∞ of D_∞.

Now we perform the symplectic summation. Let $W = \tilde{g}(U_\infty - D_\infty)$ be a neighborhood of one end of the open manifold $(M_2 - S_2) - j_2(D^2)$, where S_2 are...
Exotic symplectic structures on $S^3 \times \mathbb{R}$

the interior surfaces of S_i on $(T'_i)^i$ with the boundaries $S_i^1 = j_i(\partial D^2)$ $(i = 1, 2)$. The map $\tilde{g}^{-1} : (W, \tilde{\omega}_{M_2}) \rightarrow (\nu_1^0, \omega_i)$ symplectically identifies the ends of $((M_2 - \tilde{S}_2) - j_2(D^2), \tilde{\omega}_{M_2})$ and (ν_1^0, ω_i). Let $K = \hat{f}(\nu_1^0 - U_\infty)$ and let φ be the inverse of the symplectic embedding $\hat{f} \circ \tilde{g}^{-1} : (W, \tilde{\omega}_{M_2}) \rightarrow (M_1, \omega_{M_1})$. We use φ to glue together the two ends of $((M_1 - \tilde{S}_1) - K, \omega_{M_1})$ and $((M_2 - \tilde{S}_2) - j_2(D^2), \tilde{\omega}_{M_2})$. The resulting symplectic manifold is diffeomorphic to M. As in [2], we can get a unique isotopy class of symplectic forms on M as follows:

$$\omega_M = \begin{cases} \omega_{M_1} & \text{on } M_1 - \nu_1^0 \\ \{(1 - s)\omega_{M_1} + s \cdot \pi^*\omega_{D^2} \mid 0 \leq s < 1\} & \text{on } cl(\nu_1^0) \\ \{\tilde{\omega}_{M_2} = \omega_{M_2} + t \cdot \xi \mid 0 < t \leq t_0\} & \text{on } M_2 - j_2(D^2). \end{cases}$$

Theorem 2.2. In the above notation, we have the following results:

1. The symplectic sum (M, ω_M) is a smooth symplectic four-manifold with symplectic structures ω_M.
2. $T'_2 = (T'_1)^1_\#(T'_1)^2$ is a non-exact Lagrangian surface of genus 2 in M with respect to ω_M.
3. $[\omega_M] \neq 0$ in $H^2(M, T'_2; \mathbb{R})$.

(2) and (3) will be shown in Lemma 4.1.)

Lemma 2.3. $M = M_1 \#_\varphi M_2 \cong ((M_1 - \tilde{S}_1) - K) \cup_\varphi ((M_2 - \tilde{S}_2) - j_2(D^2)) \cong S^3 \times \mathbb{R}$, where \tilde{S}_i are the interior surfaces of S_i on $(T'_i)^i$ with the boundaries $S_i^1 = j_i(\partial D^2)$ $(i = 1, 2)$. Hence $H^1(T'_2; \mathbb{R}) \cong H^2(M, T'_2; \mathbb{R})$ is an isomorphism, where T'_2 is a Lagrangian surface of genus 2 in M.

Proof. We know that $M \cong ((M_1 - \tilde{S}_1) - K) \cup_\varphi ((M_2 - \tilde{S}_2) - j_2(D^2)) \cong S^3 \times (-\infty, 0) \cup_\varphi S^3 \times (0, \infty) \cong S^3 \times (-\infty, 0] \cup_\varphi S^3 \times [0, \infty)$. Since $\varphi = (\hat{f} \circ \tilde{g}^{-1})^{-1} = \tilde{g} \circ \hat{f}^{-1}$ glues together the two ends of $((M_1 - \tilde{S}_1) - K, \omega_{M_1})$ and $((M_2 - \tilde{S}_2) - j_2(D^2), \tilde{\omega}_{M_2})$, $M \cong S^3 \times \mathbb{R}$.

7
3. The construction of an exotic symplectic form

In this section we would like to construct symplectic forms on \(S^3 \times \mathbb{R} \) from exotic symplectic forms on two smooth symplectic manifolds \(M_i (i = 1, 2) \) diffeomorphic to \(\mathbb{R}^4 \). In section 4 we will prove that the symplectic forms are exotic.

Let \(\psi \in \Omega^1(\mathbb{R}^3) \) be such that the pull-back of \(\psi \) to the torus vanishes and \(d\psi \neq 0 \), and let \(\chi \in \Omega^1(\mathbb{R}^3) \) be such that \(\chi \wedge d\psi \) is a volume on \(\mathbb{R}^3 \). Let \(\rho = \psi + x^4 \cdot \chi \in \Omega^1(\mathbb{R}^4) \). We define \(\tau \) to be the smooth one-form on \(\mathbb{R}^4 \) given by

\[
\tau = r^2 \cos r^2 d\theta + s^2 \cos s^2 d\phi,
\]

where \(\mathbb{R}^4 \) may be thought of as \(\mathbb{R}^2 \times \mathbb{R}^2 \) and \((r, \theta), (s, \phi)\) are polar coordinates on each factor.

For details, we take \(\psi = (p^{-1})^*i^*\tau \), \(\chi = (p^{-1})^*i^*\xi \), and \(\xi = *(d\tau \wedge d\phi^2) \), where \(S^3 \) is a three sphere defined by \(r^2 + s^2 = \phi^2 \), \(i: S^3 \to \mathbb{R}^4 \) the standard embedding, and \(p: S^3 - \{x\} \to \mathbb{R}^3 \) the stereographic projection, where \(x \) is a point in \(S^3 - T_1 \). Then there is an open ball \(B \) in \(\mathbb{R}^3 \) containing \(p(T_1) \) and an interval \(I \) about \(x^4 = 0 \) so that \(\omega'_{M'} (= d\rho) \) is a symplectic form on a smooth symplectic four-manifold \(M' (\cong B \times I) \) diffeomorphic to \(\mathbb{R}^4 \).

We see that \(\tau \) vanishes only on the torus \(T_1 \) defined by \(x_1^2 + x_2^2 = r^2 = \pi/2 \) and \(y_1^2 + y_2^2 = s^2 = \pi/2 \). \(T_1 \) is an exact Lagrangian torus in \(M' \), since \(\rho |_{T_1} = 0 \) and \(\omega'_{M'} |_{T_1} = d\rho |_{T_1} = 0 \). By an isomorphism \(H^1(T_1; \mathbb{R}) \cong H^2(B \times I, T_1; \mathbb{R}) \), the relative class \([\omega'_{M'}]\) vanishes in \(H^2(B \times I, T_1; \mathbb{R}) \). We call this structure \(\omega'_{M'} \) an exotic symplectic structure on \(M' \). By the same procedure as in the section 2 with \(h: (D^2, \partial D^2) \to (\mathbb{R}^4, T_1) \) defined by \(h(x_1, y_1) = (\frac{x_1}{ \sqrt{2}}, \frac{y_1}{ \sqrt{2}}, \frac{y_2}{ \sqrt{2}}, -\frac{x_2}{ \sqrt{2}}) \), we can get a unique isotopy class of symplectic forms on \(M = M_1 \sharp_{\psi} M_2 \), where \(\omega'_{M_i} = d\rho_i \) are exotic symplectic forms on \(M_i \) as follows:

\[
\omega'_{M} = \begin{cases}
\omega'_{M_1} = d\rho_1 & \text{on } M_1 - v_1^0 \\
(1 - s)\omega'_{M_1} + s \cdot \pi^* \omega_{D^2} & |0 \leq s < 1| & \text{on } cl(v_1^0) \\
\{\tilde{\omega}'_{M_2} = \omega'_{M_2} + t \cdot \xi & |0 < t \leq t_0| & \text{on } M_2 - j_2(D^2).
\end{cases}
\]

THEOREM 3.1. In the above notations, we have the following results:

1. The symplectic sum \((M, \omega'_{M})\) is a smooth symplectic four-manifold with symplectic structures \(\omega'_{M} \).
Exotic symplectic structures on $S^3 \times \mathbb{R}$

(2) $T_2 = T_1^1 \# T_1^2$ is an exact Lagrangian surface of genus 2 in M with respect to ω_M.

(3) $[\omega_M] = 0$ in $H^2(M, T_2; \mathbb{R})$.

((2) and (3) will be shown in Lemma 4.2.)

We also have the following Lemma 3.2 which is similar to Lemma 2.3.

Lemma 3.2. $H^1(T_2; \mathbb{R}) \cong H^2(M, T_2; \mathbb{R})$ is an isomorphism, where T_2 is a Lagrangian surface of genus 2 in M.

4. Exotic symplectic structures

Let (M, ω_M) be the smooth symplectic four-manifold in Theorem 2.2. (1).

Lemma 4.1. The symplectic forms ω_M admit a non-exact Lagrangian surface T_2' of genus 2 in M and hence $[\omega_M] \neq 0$ in $H^2(M, T_2'; \mathbb{R})$.

Proof. Let $S_i^1 = j_i(\partial D^2) \cap (T_1^i)^j$ ($i = 1, 2$). Let’s divide the surface T_2' into 3 parts $[T_2' \cap (M_1 - v_1^0)] \cup [T_2' \cap cl(v_1^0)] \cup [T_2' \cap (M_2 - j_2(D^2))]$. In the first part, $\omega_{M_1} |_{T_2' \cap (M_1 - v_1^0)} = 0$, since $T_2' \cap (M_1 - v_1^0) \subset (T_1^1)^{1}$ and $\omega_{M_1}|_{(T_1^1)^j} = 0$. In the second part, $\omega_{M_1} |_{T_2' \cap cl(v_1^0)} = 0$, since $T_2' \cap cl(v_1^0) = S_1^1 \subset (T_1^1)^{1}$. And $\pi^* \omega_{D^2} |_{T_2' \cap cl(v_1^0)} = \omega_{D^2} |_{S_1^1} = 0$. Thus $(1 - s)\omega_{M_1} + s \pi^* \omega_{D^2} |_{T_2' \cap cl(v_1^0)} = 0$ (0 \leq $s < 1$). In the third part, $\omega_{M_2} |_{T_2' \cap (M_2 - j_2(D^2)) = 0}$, since $T_2' \cap (M_2 - j_2(D^2)) \subset (T_1^1)^{2}$ and $\omega_{M_2} |_{(T_1^1)^2} = 0$. Also ζ is zero on $T_2' \cap (M_2 - j_2(D^2))$, since ζ is zero on $M_2 - g(S - D_0)$ and $T_2' \cap (M_2 - j_2(D^2)) \subset M_2 - g(S - D_0)$. Thus $\tilde{\omega}_{M_2} |_{T_2' \cap (M_2 - j_2(D^2))} = 0$ and hence, T_2' is a Lagrangian surface of genus 2 in $(M = M_1 \# M_2, \omega_M)$.

Let’s examine the exactness of the Lagrangian surface T_2' in M. $\varphi_s'(\sum_{i=1}^{2} x_i dy_i) |_{(T_1^i)^j} = \sum_{i=1}^{2} x_i dy_i |_{T_2'} = j^*(\sum_{i=1}^{2} x_i dy_i)$ can be locally written by $\frac{\pi}{2} (\sin \theta \cos \phi - \cos \theta \sin \phi) d\phi$. Let S_0 be a meridian in the torus T_1^i with $\theta = 0$. Then we have

$$\int_{S_0} j^* \left(\sum_{i=1}^{2} x_i dy_i \right) = -\frac{\pi}{2} \int_{0}^{2\pi} \sin \phi d\phi$$

$$= \frac{\pi}{2} \cdot 4[\cos \phi]_{0}^{\pi}$$

$$\neq 0.$$
4.1, we can easily see that \(\omega\) with \(i\) and \(T_i\) with symplectic forms admitting exact Lagrangian tori \(M_i\) are symplectic. Since \(\omega\) is not exact. Thus \(T_2\) is a non-exact Lagrangian in \(M\). By the isomorphism in Lemma 2.3, \([\omega_M] \neq 0\) in \(H^2(M, T_2^2; \mathbb{R})\).

Let \((M, \omega'_M)\) be the smooth symplectic four-manifold in Theorem 3.1.(1).

Lemma 4.2. The symplectic forms \(\omega'_M\) admit an exact Lagrangian surface \(T_2\) of genus 2 in \(M\) and hence \([\omega'_M] = 0\) in \(H^2(M, T_2^2; \mathbb{R})\).

Proof. By the same method shown in the first part of the proof of Lemma 4.1, we can easily see that \(\omega'_M|_{T_2} = 0\) and hence \(T_2\) is also a Lagrangian surface of genus 2 in \((M = M_1 \sharp \psi M_2, \omega'_M)\).

Let’s examine the exactness of the Lagrangian surface \(T_2\) in \(M\). \(\rho_1|_{T_2 \cap (M_1 - v_0)} = 0\), since \(T_2 \cap (M_1 - v_0) \subseteq T_1^1\) and \(\rho_1|_{T_1^1} = 0\). Moreover \(\pi^*(x_1 dy_1)|_{T_2 \cap (v_0^1)} = x_1 dy_1|_{v_0^1}\) is an exact form. Therefore \((1 - s) \rho_1 + s \cdot \pi^*(x_1 dy_1)|_{T_2 \cap (v_0^1)}\) is exact. We know that \(\omega_{M_1}|_{T_2 \cap (M_2 - j_2(D^2))} = d\rho_2|_{T_2 \cap (M_2 - j_2(D^2))}\), since \(\zeta\) is zero on \(T_2 \cap (M_2 - j_2(D^2)) \subseteq M_2 - g(S - D_0)\) and that \(\rho_2|_{T_1^1 \cap (M_2 - j_2(D^2))} = 0\), since \(T_2 \cap (M_2 - j_2(D^2)) \subseteq T_1^2\) and \(\rho_2|_{T_1^2} = 0\). Thus \(T_2\) is an exact Lagrangian in \(M\) and we conclude Lemma 4.2 by the use of Lemma 3.2.

By the Lemmas 4.1, 4.2, we can get the following Theorem 4.3.

Theorem 4.3. The symplectic forms \(\omega_M\) on the symplectic sum \(M\) of two smooth symplectic four-manifolds \(M_i\) \((i = 1, 2)\) diffeomorphic to \(\mathbb{R}^4\) with symplectic forms admitting non-exact Lagrangian tori \((T_i^1)'\) \((i = 1, 2)\) admit a non-exact Lagrangian surface \(T'_2\) of genus 2 and \([\omega_M] \neq 0\) in \(H^2(M, T_2^2; \mathbb{R})\).

On the other hand, the symplectic forms \(\omega'_M\) on the symplectic sum \(M\) of two smooth symplectic four-manifolds \(M_i\) \((i = 1, 2)\) diffeomorphic to \(\mathbb{R}^4\) with symplectic forms admitting exact Lagrangian tori \(T_i^1\) \((i = 1, 2)\) admit an exact Lagrangian surface \(T_2\) of genus 2 and \([\omega'_M] = 0\) in \(H^2(M, T_2^2; \mathbb{R})\). Therefore, \((M, \omega'_M)\) does not symplectically diffeomorphic to \((M, \omega_M)\).

In addition, we can show the exoticities of \(\omega_M\) and \(\omega'_M\) for any closed 2-form (not necessarily exact) \(\eta\) on the sphere bundle \(S \cong D^2 \times S^2\) over \(D^2\) with \(i_0^\eta = 0\) and \(\eta\) restricting to a symplectic form on each fiber, since \(T'_2 \cap ((M_2 - S_j) - j_2(D^2)) \subseteq M_2 - g(S - D_0)\).
Exotic symplectic structures on $S^3 \times \mathbb{R}$

References

DEPARTMENT OF MATHEMATICS, EWHAA WOMANS UNIVERSITY, SEOUL 120-750, KOREA