CONTINUITY OF JORDAN *\-HOMOMORPHISMS OF BANACH *\-ALGEBRAS

DUMITRU D. DRĂGHIA

1. Introduction

Let \(T : A \rightarrow B \) be a homomorphism between Banach algebras \(A \) and \(B \). Suppose that \(\overline{T(A)} \) is semi-simple. Is \(T \) necessarily continuous?

This is perhaps the most interesting open question remains in automatic continuity theory for Banach algebras. (To see [4], Open questions (16)). The continuity of homomorphisms between certain Banach algebras has been considered by several authors ([6], [9], [1], [4], [7], [3], [5], etc.). In this note we prove the following result: Let \(A \) be a complex Banach *\-algebra with continuous involution and let \(B \) be an \(A^*\)-algebra. Let \(T : A \rightarrow B \) be an jordan *\-homomorphism such that \(\overline{T(A)} = B \). Then \(T \) is continuous (Theorem 2).

From above theorem some others results of special interest and some well-known results follow. (Corollaries 3, 4, 5, 6 and 7). We close this note with some generalizations and some remarks (Theorems 8, 9, 10 and question).

Throughout this note we consider only complex algebras. Let \(A \) and \(B \) be complex algebras. A linear mapping \(T \) from \(A \) into \(B \) is called jordan homomorphism if \(T(x^2) = (Tx)^2 \) for all \(x \) in \(A \). A linear mapping \(T : A \rightarrow B \) is called spectrally-contractive mapping if \(\rho(Tx) \leq \rho(x) \) for all \(x \) in \(A \), where \(\rho(x) \) denotes spectral radius of element \(x \). Any homomorphism algebra is a spectrally-contractive mapping. If \(A \) and \(B \) are *\-algebras, then a homomorphism \(T : A \rightarrow B \) is called *\-homomorphism if \((Th)^* = Th \) for all self-adjoint element \(h \) in \(A \). Recall that a Banach *\-algebras is a complex Banach algebra with an involution *. An \(A^*\)-algebra \(A \) is a Banach *\-algebra having an auxiliary norm \(|\cdot| \) which satisfies \(B^*\)-condition \(|x^*x| = \)

Received May 29, 1992.
A Banach $*$-algebra whose norm is an algebra B^*-norm is called B^*-algebra. The $*$-semi-simple Banach $*$-algebras and the semi-simple hermitian Banach $*$-algebras are A^*-algebras. Also, A^*-algebras include B^*-algebras (C^*-algebras). Recall that a semi-prime algebra is an algebra without nilpotents two-sided ideals non-zero. The class of semi-prime algebras includes the class of semi-prime algebras and the class of prime algebras. For all concepts and basic facts about Banach algebras we refer to [2] and [8].

2. Continuity of Jordan $*$-homomorphism

First, we give the following result:

Theorem 1. If T is an Jordan homomorphism from a Banach algebra A, with its range dense into a semi-prime Banach algebra B, then T is a spectrally-contractive mapping.

Proof. Using the properties of the Jordan homomorphisms it is readily verified that $T([x, y]) = [Tx, Ty]$ for all x and y in A, and $T([x, y], z) = [Tx, Ty, Tz]$ for all x, y and z in A, where $[x, y] = xy - yx$ denotes Lie product of elements x and y. Now, let x and y be in A such that $[x, y] = 0$. Then it follows $[Tx, Ty]^2 = 0$. The continuity of Lie multiplication and density of range of T imply that $[Tx, Ty]$ is a central nilpotent element of B. But a semi-prime algebra contains not of central nilpotent non-zero elements. Therefore $[x, y] = 0$ implies that $[Tx, Ty] = 0$. Hence, if $xy = yx$, then $T(xy) = T(yx) = \frac{1}{2}T(xy + yx) = \frac{1}{2}(TxTy + TyTx) = TxTy = TyTx$. If x is an arbitrary quasi-invertible element of A, then there exists an element y in A such that $xy = yx = x + y$. It follows that $TxTy = TyTx = Tx + Ty$, that is Ty is quasi-invertible element of Tx. Hence T reduces the spectrum of elements. From this the conclusion of theorem it follows.

Theorem 2. If T is an Jordan $*$-homomorphism from a Banach $*$-algebra A with continuous involution, with its range dense into an A^*-algebra B, then T is continuous.

Proof. A^*-algebras are semi-simple ([8], Theorem 4.1.19) and semi-simple algebras are semi-prime ([2], proposition 30.4). Then, by Theorem 1, $\rho(Tx) \leq$
Continuity of Jordan \(\ast\)-Homomorphisms of Banach \(\ast\)-Algebras

\(\rho(x)\) for all \(x\) in \(A\). Let \(h\) be a self-adjoint element of \(A\). Then, from [8], Lemma 4.1.14, it follows that \(|Th| \leq \rho(Th)\). Therefore, we have \(|Th| \leq \rho(Th) \leq \rho(h) \leq ||h||\) for each self-adjoint element \(h\) in \(A\). Every element \(x\) of a complex \(\ast\)-algebra \(A\) has an unique representation \(x = \mu + iv\), with \(\mu\) and \(v\) self-adjoint elements of \(A\). Since the involution is continuous, it follows that any sequence \((x_n)\) of elements of \(A\) converges to an element \(x\) in \(A\) if only if the sequence of self-adjoint components of \((x_n)\) converge respectively to corresponding self-adjoint components of \(x\). Let \((x_n)\) be a sequence of elements in \(A\) such that \(x_n \to 0\) as \(n \to \infty\). If \(x_n = \mu_n + v_n\), where \(\mu_n^* = \mu_n\) and \(v_n^* = v_n\), \(n = 1, 2, 3, \ldots\), then \(|Tx_n| \leq |T\mu_n| + |Tv_n| \leq ||\mu_n|| + ||v_n|| \to 0\), as \(n \to \infty\). Thus, by Closed Graph Theorem, it follows that \(T\) is continuous.

Corollary 3. If \(T\) is an Jordan \(\ast\)-homomorphism from a semi-simple Banach \(\ast\)-algebra, with its range dense into an \(A^*\)-algebra, then \(T\) is continuous.

Proof. On a semi-simple Banach algebra every involution is continuous ([6]). Apply Theorem 2.

Corollary 4. If \(T\) is an Jordan \(\ast\)-homomorphism between \(A^*\)-algebras (in particular, \(B^*\)-algebras, \(C^*\)-algebras), with its range dense, then \(T\) is continuous.

Proof. The involution in an \(A^*\)-algebra is necessarily continuous with respect to both norms ([8], Theorem 4.1.15). Apply Theorem 2.

All the above results remain valid for any \(\ast\)-homomorphism \(T\), without density assumption on the range of \(T\).

Corollary 5. Any \(\ast\)-homomorphism from a Banach \(\ast\)-algebra with continuous involution into an \(A^*\)-algebra is continuous.

Proof. It is well-known that the homomorphisms reduce the spectra of elements.

Corollary 6. Any \(\ast\)-homomorphism from a semi-simple Banach \(\ast\)-algebra into an \(A^*\)-algebra is continuous.
Proof. By proof of Corollary 3.

Corollary 7. Any *-homomorphism between A^*-algebras (in particular, B^*-algebras, C^*-algebras) is continuous.

Proof. It is clear.

3. Some generalizations and remarks.

We close this note with some generalizations and remarks which are of some interest. Theorem below is a generalization of Theorem 2 and it has a more elementary proof.

Theorem 8. Let A be a Banach *-algebra with continuous involution, let B be an A^*-algebra and let $T : A \rightarrow B$ be a linear mapping such that $T h$ is a self-adjoint element of B and $\rho(T h) \leq \rho(h)$ for every self-adjoint element h of A. Then T is continuous.

We do not know if this theorem holds without continuity assumption on the involution in A, but have the following partial result which extends Corollary 5:

Actually it is desirable to consider the more general situation.

Theorem 10. Let A be a Banach algebra, and let T be a homomorphism from A into an A^*-algebra.

Assume that for each element x in A there exists an element y in A such that $\|yx\| \leq \|x\|^2$ and $(Tx)^* = Ty$. Then T is continuous.

The condition $\|yx\| \leq \|x\|^2$ is practically redundant here and removing it we obtain a generalization of the Theorem 3.2 of [7]. It only remains to give an elementary proof.

Finally, we think that is special interest to know the answer to

Question: Is every spectrally-contracive linear mapping from a Banach algebra into an A^*-algebra necessarily continuous?
Continuity of Jordan Homomorphisms of Banach Algebras

References

BUCURESTI UNIVERSITY, FACULTY OF MATHEMATICS, 70109 ACADEMIEI 14, ROMÂNIA