A REMARK ON MULTIPLICATION MODULES

CHANG WOO CHOI AND EUN SUP KIM

Modules which satisfy the converse of Schur's lemma have been studied by many authors. In [6], R. Ware proved that a projective module \(P \) over a semiprime ring \(R \) is irreducible if and only if \(\text{End}_R(P) \) is a division ring. Also, Y. Hirano and J.K. Park proved that a torsionless module \(M \) over a semiprime ring \(R \) is irreducible if and only if \(\text{End}_R(M) \) is a division ring. In case \(R \) is a commutative ring, we obtain the following: An \(R \)-module \(M \) is irreducible if and only if \(\text{End}_R(M) \) is a division ring and \(M \) is a multiplication \(R \)-module.

Throughout this paper, \(R \) is a commutative ring with identity and all modules are unital left \(R \)-modules.

Let \(R \) be a commutative ring with identity and let \(M \) be an \(R \)-module. Then \(M \) is called a multiplication module if for each submodule \(N \) of \(M \), there exists an ideal \(I \) of \(R \) such that \(N = IM \).

Cyclic \(R \)-modules are multiplication modules. In particular, irreducible \(R \)-modules are multiplication modules.

An endomorphism \(f \) of an \(R \)-module \(M \) is called trivial if there exists \(a \in R \) such that \(f(m) = am \), for all \(m \in M \). We set

\[
\text{Tri}(M) = \{ f \in \text{End}_R(M) | f \text{ is trivial} \}.
\]

Clearly, \(\text{Tri}(M) \cong R/\text{ann}_R(M) \) and \(\text{Tri}(M) \) is a subring of \(\text{End}_R(M) \).

Theorem 1. Let \(M \) be a finitely generated faithful multiplication \(R \)-module. If \(\text{End}_R(M) \) is a division ring, then \(R \) is a field and \(M \) is an \(1 \)-dimensional vector space over \(R \).
Proof. Let M be a finitely generated faithful multiplication R-module. Then $R \cong \text{Tri}(M)$, and R can be embedded in $\text{End}_R(M)$. Since M is finitely generated multiplication R-module, $\text{End}_R(M) = \text{Tri}(M)$ [5, Theorem 3]. Hence $R \cong \text{End}_R(M)$. Thus R is a field. In view of Corollary in [3], M is an 1-dimensional vector space over R.

Lemma 2. Let M be a faithful R-module. Then M is irreducible if and only if $\text{End}_R(M)$ is a division ring and M is a multiplication R-module.

Proof. It remains to show the “if” part. Assume that M is a faithful multiplication R-module and let $\text{End}_R(M)$ be a division ring. Since M is a faithful R-module, R can be embedded in $\text{End}_R(M)$. Since $\text{End}_R(M)$ is a division ring, R is an integral domain. Thus R is a semiprime ring. Now M is a faithful multiplication R-module, M is torsionless [4, Theorem 1.3]. By [2, Corollary 3], M is irreducible.

Theorem 3. Let M be an R-module. Then M is irreducible if and only if $\text{End}_R(M)$ is a division ring and M is a multiplication R-module.

Proof. Let $I = \text{ann}_R(M)$. Then M is a faithful R/I-module and M is a multiplication R/I-module. Since $\text{End}_{R/I}(M) = \text{End}_R(M)$ and $\text{End}_R(M)$ is a division ring, $\text{End}_{R/I}(M)$ is a division ring. By Lemma 2, M is a irreducible R/I-module. Thus M is a irreducible R-module.

Corollary. Let M be a projective R-module. Then M is irreducible if and only if $\text{End}_R(M)$ is a divison ring.

Proof. If M is a projective R-module and $\text{End}_R(M)$ is a division ring, then M is a cyclic module [6, Proposition 4.3]. Thus M is a multiplication R-module. By Theorem 3, M is irreducible.

References

A remark on multiplication modules

DEPARTMENT OF MATHEMATICS, KYUNGPOOK NATIONAL UNIVERSITY, TAEGU 702-701, KOREA